• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (20): 283-292.doi: 10.3901/JME.2025.20.283

• 运载工程 • 上一篇    

扫码分享

基于模糊综合评价与K均值算法的退役电池分选方法

常龙1, 杜恒珲1, 王炜斌1, 李长龙2, 于志豪1, 段彬2   

  1. 1. 山东科技大学储能技术学院 青岛 266590;
    2. 山东大学控制科学与工程学院 济南 250061
  • 收稿日期:2024-12-05 修回日期:2025-08-10 发布日期:2025-12-03
  • 作者简介:常龙,男,1987年出生,硕士研究生导师。主要研究方向为新能源汽车动力电池管理系统、锂电池储能高效利用技术和锂电池梯次利用。E-mail:lchang@sdust.edu.cn
    杜恒珲,男,1998年出生。主要研究方向为锂电池梯次利用。E-mail:zsdxd22@163.com
    王炜斌,男,1998年出生。主要研究方向为锂离子电池故障诊断。E-mail:wangweibin0414@163.com
    于志豪,男,1978年出生,副教授,硕士研究生导师。主要研究方向为锂电池电源系统集成、电动车辆动力控制系统和非线性系统状态观测与参数辨识。E-mail:zhihaoa@163.com
    李长龙,男,1992年出生,副教授。主要研究方向为新能源汽车动力电池系统的建模及管理。E-mail:changlongli@mail.sdu.edu.cn
    段彬(通信作者),男,1982年出生,教授。主要研究方向为新能源汽车动力电池测试-模拟-管理、新能源装备及储能、大数据采集与处理。E-mail:duanbin@sdu.edu.cn
  • 基金资助:
    国家自然科学基金(62103242,62303278,62133007,62333013)和山东省高校青年创新团队(2022KJ221)资助项目。

A Sorting Method for Retired Batteries Based on Fuzzy Comprehensive Evaluation and the Kmeans Algorithm

CHANG Long1, DU Henghui1, WANG Weibin1, LI Changlong2, YU Zhihao1, DUAN Bin2   

  1. 1. School of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590;
    2. School of Control Science and Engineering, Shandong University, Jinan 250061
  • Received:2024-12-05 Revised:2025-08-10 Published:2025-12-03

摘要: 为了解决退役锂离子电池造成的资源浪费和环境污染问题,通过分选和再利用技术实现退役电池的梯次利用成为一个关键策略。在此背景下,提出了一种有效的退役电池分选新方案,包括拆解退役电池包、电池测试、基于相关性分析的参数选择、模糊综合评价(Fuzzy comprehensive evaluation,FCE)与K均值算法(Kmeans,KM)相结合的FCE-KM分选方法,并根据分选结果对梯次利用提出有效建议。试验结果表明,参数的相关性分析中,放电容量与放电结束开路电压和放电10 s内阻分别呈现强、中等的负相关性,放电结束开路电压和放电10 s内阻之间存在较弱的正相关性。与单独使用FCE相比,FCE-KM的整体性能一致性提高19%,验证了该方法的有效性。最后,根据不同等级电池分选后的容量范围以及在退役电池包中的分布情况,得出在退役电池包被收集的初期,根据母线装配位置对其进行提前分类,可简化收集过程,提高效率。

关键词: 退役电池包拆解, 退役电池分选, 梯次利用, 相关性, 模糊综合评价

Abstract: To address the resource waste and environmental pollution caused by retired lithium-ion batteries, achieving second-life utilization through sorting and reuse technologies has emerged as a crucial strategy. Against this backdrop, we propose an effective novel scheme for sorting retired batteries. This scheme involves the disassembly of retired battery packs, battery testing, parameter selection based on correlation analysis, the FCE-KM sorting method that combines Fuzzy Comprehensive Evaluation (FCE) and the K-means algorithm (KM), and the provision of effective suggestions for second-life utilization according to the sorting results. The results indicate that in the correlation analysis of parameters, the discharge capacity exhibits a strong and a moderate negative correlation with the open circuit voltage after discharge rest and the internal resistance during 5-10 s discharge, respectively. Moreover, there is a weak positive correlation between the open circuit voltage after discharge rest and the internal resistance during 5-10 s discharge. Compared with the exclusive use of FCE, the overall performance consistency of FCE-KM improves by 19%, which validates the effectiveness of this method. Finally, based on the distribution of batteries of different grades in retired battery packs that is related to the positions of the busbar, it is concluded that in the initial stage of collecting retired battery packs, they can be pre-classified according to the positions of the busbar. This pre-classification can simplify the collection process and improve efficiency, facilitating the subsequent second-life utilization.

Key words: dismantle retired battery pack, retired battery sorting, second-life utilization, correlation, fuzzy comprehensive evaluation

中图分类号: