• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (10): 427-438.doi: 10.3901/JME.2025.10.427

• 交叉与前沿 • 上一篇    

扫码分享

作业车间调度中非改进邻域解的识别理论与方法

黄学文, 王强, 陈桢   

  1. 大连理工大学经济管理学院 大连 116024
  • 收稿日期:2024-05-20 修回日期:2024-12-23 发布日期:2025-07-12
  • 作者简介:黄学文(通信作者),男,1968年出生,博士,副教授。主要研究方向为生产调度、ERP/MES、计算机技术等。E-mail:huangxuewen@dlut.edu.cu;王强,男,1995年出生。主要研究方向为生产调度。E-mail:wangqiang152025@163.com;陈桢,女,2001年出生。主要研究方向为生产调度。E-mail:chenzhen17@126.com
  • 基金资助:
    国家自然科学基金资助项目(72073018)

Theories and Methods of Non-improved Neighbouring Solution Recognition in Job-shop Scheduling

HUANG Xuewen, WANG Qiang, CHEN Zhen   

  1. School of Economics and Management, Dalian University of Technology, Dalian 116024
  • Received:2024-05-20 Revised:2024-12-23 Published:2025-07-12

摘要: 在局部搜索算法求解作业车间调度问题(Job-shop scheduling problem,JSP)时,准确识别邻域中的改进和非改进邻域解,可提高计算效率。为此,提出一种改进和非改进邻域解的判定定理,该判定定理在传统判定理论的基础上进行拓展,能够更为精准地对改进和非改进邻域解进行识别。考虑到所提出的判定定理需要高代价的精确算法,针对JSP常用的N1、N4、N5、N6和N7邻域结构,进一步提出一种低代价的非改进邻域解判定方法,在不需要实际执行移动的前提下,可实现非改进邻域解的快速识别。试验结果表明:尽管不能完全识别邻域中的所有非改进邻域解,但仍然能够筛查掉邻域中36.12%~94.92%的非改进邻域解;与此同时,在不降低求解质量的前提下,显著提升了局部搜索算法的计算效率。

关键词: 非改进邻域解, 邻域结构, 局部搜索, 作业车间调度

Abstract: In solving the job-shop scheduling problem(JSP) using local search algorithms, accurately identifying improved and non-improved neighboring solutions within the neighborhood can enhance computational efficiency. To this end, a decision theorem for identifying improved and non-improved neighboring solutions is proposed. This theorem extends traditional decision theories, enabling more precise identification of improved and non-improved neighboring solutions. Considering that the proposed decision theorem requires high-cost exact algorithms, a low-cost method for identifying non-improved neighboring solutions is further developed for commonly used neighborhood structures, such as N1, N4, N5, N6 and N7. It can realize the rapid identification of non-improved neighbouring solutions without really performing the move resulting in the neighbouring solution. The experimental results show that, although it may not be possible to fully identify all non-improved neighbouring solutions in the neighbourhood, the proposed method can screen out 36.12%-94.92% of non-improved neighboring solutions. Moreover, without compromising solution quality, it significantly improves the computational efficiency of local search algorithms.

Key words: non-improved neighbouring solution, neighborhood structure, local search, job-shop scheduling

中图分类号: