[1] 黄学荣. 箱体零件形位公差设计及加工检测工艺分析[J]. 煤矿机械,2017,38(3):72-74. HUANG Xuerong. Box part tolerances of form design and process analysis of detection technology[J]. Coal Mine Machinery,2017,38(3):72-74. [2] 田崇言. 基于Pro/Toolkit的智能箱体零件数控工艺设计系统研究[D]. 青岛:山东科技大学,2016. TIAN Chongyan. Research on NC process design system based on Pro/Toolkit of smart box parts[D]. Qingdao:Shandong University of Science and Technology,2016. [3] 王德伦,申会鹏,孙元,等. 复杂零件结构设计的概念单元方法[J]. 机械工程学报,2016,52(7):152-163. WANG Delun,SHEN Huipeng,SUN Yuan,et al. A novel approach for conceptual structural design of complex machine elements[J]. Journal of Mechanical Engineering,2016,52(7):152-163. [4] BHINGE R,PARK J,LAW K,et al. Toward a generalized energy prediction model for machine tools[J]. Journal of Manufacturing Science and Engineering:Transactions of the ASME,2017,139(4):041013. [5] 徐兴硕,李方义,孔维森,等. 基于Vericut的机床能耗建模与仿真[J]. 中国机械工程,2018,29(21):2533-2538. XU Xingshuo,LI Fangyi,KONG Weisen,et al. Energy consumptions modeling and simulation of machine tools based on vericut[J]. China Mechanical Engineering,2018,29(21):2533-2538. [6] 周志雄,李伟,宋铁军,等. 微细切削加工用微主轴的性能要求及其研究现状[J]. 机械工程学报,2011,47(19):149-157. ZHOU Zhixiong,LI Wei,SONG Tiejun,et al. Performance requirements and research state of micro-spindles for micro-cutting[J]. Journal of Mechanical Engineering,2011,47(19):149-157. [7] 刘培基,刘飞,王旭,等. 绿色制造的理论与技术体系及其新框架[J]. 机械工程学报,2021,57(19):165-179. LIU Peiji,LIU Fei,WANG Xu,et al. The theory and technology system of green manufacturing and their new frameworks[J]. Journal of Mechanical Engineering,2021,57(19):165-179. [8] 王蕾,郭钰瑶,张泽琳,等. 再制造服务的广义内涵、研究现状与发展趋势[J]. 机械工程学报,2021,57(7):138-153. WANG Lei,GUO Yuyao,ZHANG Zelin,et al. Extensive concept,state-of-the art developing trends of remanufacturing service[J]. Journal of Mechanical Engineering,2021,57(7):138-153. [9] 刘雪梅,周易,黄剑锋,等. 基于制造资源的复杂箱体零件加工特征识别方法[J]. 计算机集成制造系统,2015,21(12):3166-3173. LIU Xuemei,ZHOU Yi,HUANG Jianfeng,et al. Machining feature recognition method for complicated boxy parts based oil manufacturing resources[J]. Computer Integrated Manufacturing Systems,2015,21(12):3166-3173. [10] 李爱平,鲁力,王世海,等. 复杂箱体零件柔性机加工生产线平衡优化[J]. 同济大学学报,2015,43(4):625-632. LI Aiping,LU Li,WANG Shihai,et al. Optimization of flexible machining line balancing for complex prismatic parts[J]. Journal of Tongji University,2015,43(4):625-632. [11] HU Luoke,TANG Renzhong,JIA Shun,et al. Estimating machining-related energy consumption of parts at the design phase based on feature technology[J]. International Journal of Production Research,2015,53(23-24):7016-7033. [12] 张雷,赵希坤,蒋诗新,等. 低碳低成本约束下箱体零件加工路线优化方法[J]. 中国机械工程,2018,29(23):2836-2844. ZHANG Lei,ZHAO Xikun,JIANG Shixin,et al. Optimization method of process routes for housing parts under low-carbon and low-cost constraints[J]. China Mechanical Engineering,2018,29(23):2836-2844. [13] SRINIVASAN M,SHENG P. Feature-based process planning for environmentally conscious machining-part 1:Microplanning[J]. Robotics and Computer-Integrated Manufacturing,1999,15(3):257-270. [14] SRINIVASAN M,SHENG P. Feature-based process planning for environmentally conscious machining-part 1:Microplanning[J]. Robotics and Computer-Integrated Manufacturing,1999,15(3):257-270. [15] HU Luoke,PENG Chen,EVANS S,et al. Minimising the machining energy consumption of a machine tool by sequencing the features of a part[J]. Energy,2017,121:292-305. [16] LI Wen,KARA S. An empirical model for predicting energy consumption of manufacturing processes:a case of turning process[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2011,225(9):1636-1646. [17] KARA S,LI Wen. Unit process energy consumption models for material removal processes[J]. CIRP Annals,2011,60(1):37-40. [18] JIA Shun,TANG Renzhong,LÜ Jingxiang,et al. Energy modeling for variable material removal rate machining process:an end face turning case[J]. The International Journal of Advanced Manufacturing Technology,2016,85(9/12):2805-2818. [19] WANG Lihui,MENG Yue,JI Wei,et al. Cutting energy consumption modelling for prismatic machining features[J]. The International Journal of Advanced Manufacturing Technology,2019,103(5/8):1657-1667. [20] ZHAO Guoyong,LI Chunxiao,TIAN Yingzhou,et al. Prediction model for net cutting specific energy in cnc turning[J]. Transactions of Nanjing University of Aeronautics and Astronautics,2020,37(3):385-392. [21] 李涛,孔露露,张洪潮,等. 典型切削机床能耗模型的研究现状及发展趋势[J]. 机械工程学报,2014,50(7):102-111. LI Tao. KONG Lulu,ZHANG Hongchao,et al. Recent research and development of typical cutting machine tool's energy consumption model[J]. Journal of Mechanical Engineering,2014,50(7):102-111. [22] 李聪波,尹誉先,肖溱鸽,等. 数据驱动下基于元动作的数控车削能耗预测方法[J]. 中国机械工程,2020,31(21):2601-2611. LI Congbo,YIN Yuxian,XIAO Qinge,et al. Data-driven energy consumption prediction method of cnc turning based on meta-action[J]. China Mechanical Engineering,2020,31(21):2601-2611. [23] 吕景祥,唐任仲,郑军. 数据驱动的车削和钻削加工能耗预测[J]. 计算机集成制造系统,2020,26(8):2073-2082. LÜ Jingxiang,TANG Renzhong,ZHENG Jun. Data-driven methodology for energy consumption prediction of turning and drilling processes[J]. Computer Integrated Manufacturing Systems,26(8):2073-2082. [24] LIU Ziye,GUO Yuebin. A hybrid approach to integrate machine learning and process mechanics for the prediction of specific cutting energy[J]. CIRP Annals,2018,67(1):57-60. [25] HE Yan,WU Pengcheng,LI Yufeng,et al. A generic energy prediction model of machine tools using deep learning algorithms[J]. Applied Energy,2020,275(1):115402 [26] LÜ Lishu,DENG Zhaohui,YAN Can,et al. Modelling and analysis for processing energy consumption of mechanism and data integrated machine tool[J]. International Journal of Production Research,2020,58(23/24):7078-7093. [27] 张英杰,许艾. 基于特征的箱体类零件数控编程技术[J].西安交通大学学报,2008,42(5):578-582. ZHANG Yingjie,XU Ai. Efficient feature-based approach to numerical control programming for prismatic parts[J]. Journal of Xi'an Jiaotong University,2008,42(5):578-582. [28] 段现银,余胜,彭芳瑜,等. 基于特征矩阵的大型舱体类构件毛坯模型复杂特征分层识别方法[J]. 机械工程学报,2021,57(5):166-176. DUAN Xianyin,YU Sheng,PENG Fangyu,et al. Feature matrix based complex feature hierarchical recognition for blank model of large cabin component[J]. Journal of Mechanical Engineering,2021,57(5):166-176. [29] 徐立云,史楠,段建国,等. 基于特征加工元的复杂箱体类零件工艺路线优化[J]. 中国机械工程,2013,24(2):202-208. XU Liyun,SHI Nan,DUAN Jianguo,et al. Process route optimization of complex housing-type parts based on feature machining element[J]. China Mechanical Engineering,2013,24(2):202-208. [30] 刘舒,姜琦刚,马玥,等. 基于多目标遗传随机森林特征选择的面向对象湿地分类[J]. 农业机械学报,2017,48(1):119-127. LIU Shu,JIANG Qigang,MA Yue,et al. Object-oriented wetland classification based on hybrid feature selection method combining with relief f,multi objective genetic algorithm and random forest[J],Journal of Agricultural Machinery,2017,48(1):119-127. [31] 王干军,李锦舒,吴毅江,等. 基于随机森林的高压电缆局部放电特征寻优[J]. 电网技术,2019,43(4):1329-1335. WANG Ganjun,LI Jinshu,WU Yijiang,et al. Random forest based feature selection for partial discharge recognition of HV cables[J]. Power System Technology,2019,43(4):1329-1335. [32] 赵帅,黄亦翔,王浩任,等. 基于随机森林与主成分分析的刀具磨损评估[J]. 机械工程学报,2017,53(21):181-189. ZHAO Shuai,HUANG Yixiang,WANG Haoren,et al. Random forest and principle components analysis based on health assessment methodology for tool wear[J]. Journal of Mechanical Engineering,2017,53(21):181-189. [33] 刘锡炀,卞永明,陈启凡,等. 基于图像识别的液压同步提升系统漏油在线检测[J]. 中国工程机械学报,2022,20(3):257-262. LIU Xiyang,BIAN Yongming,CHEN Qifan,et al. Online detection of oil leakage in hydraulic synchronous lifting system based on image recognition[J]. Chinese Journal of Construction Machinery. 2022,20(3):257-262. [34] 秦继鹏,刘俨后,麻娟,等. 基于BP神经网络的轮胎模具微铣削能耗预测[J]. 机床与液压,2021,49(24):57-60. QIN Jipeng,LIU Yanhou, MA Juan. Energy consumption prediction for radial tire die micro-milling based on BP neural network[J]. Machine Tool &Hydraulics,2021,49(24):57-60. [35] 陈世平,谢俊,罗小,等. 基于BP-Adaboost算法的数控机床材料切削能耗预测研究[J]. 制造技术与机床,2020(12):20-24. CHEN Shiping,XIE Jun,LUO Xiao,et al. Study onmaterial cutting energy consumption prediction of CNC machine t00I based on BP-adaboost aIgorithm[J]. Green Manufacturing,2020(12):20-24. [36] 刘飞,刘培基,李聪波,等. 制造系统能量效率研究的现状及难点问题[J]. 机械工程学报,2017,53(5):1-11. LIU Fei,LIU Peiji,LI Congbo,et al. The statue and difficult problems of research on energy efficiency of manufacturing systems[J]. Journal of Mechanical Engineering,2017,53(5):1-11. |