• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (9): 171-185.doi: 10.3901/JME.2023.09.171

• 摩擦学 • 上一篇    下一篇

扫码分享

微流道界面剪切对液膜密封空化流场特性的影响研究

胡琼1,2, 肖洋1, 卢迪1, 曹志康1, 王晓雷2, 王衍1, 武扬1, 何一鸣1   

  1. 1. 江苏海洋大学机械工程学院 连云港 222005;
    2. 南京航空航天大学直升机传动技术重点实验室 南京 210016
  • 收稿日期:2022-05-18 修回日期:2022-12-16 出版日期:2023-05-05 发布日期:2023-07-19
  • 通讯作者: 王晓雷(通信作者),男,1963年出生,博士,教授,博士研究生导师。主要研究方向为表面工程及摩擦学。E-mail:wxl@nuaa.edu.cn E-mail:wxl@nuaa.edu.cn
  • 作者简介:胡琼,女,1989年出生,博士,副教授。主要研究方向为工程摩擦学与流体密封技术。E-mail:huqiong2007@163.com
  • 基金资助:
    国家自然科学基金(52105187, 52275192)、连云港市博士后科研(LYG20220012)、江苏高校“青蓝工程”和江苏省研究生科研创新计划(KYCX2021-047)资助项目。

Influence of Microchannel Interface Shear on Cavitation Flow Field Characteristics of Liquid Film Seal

HU Qiong1,2, XIAO Yang1, LU Di1, CAO Zhikang1, WANG Xiaolei2, WANG Yan1, WU Yang1, HE Yiming1   

  1. 1. School of Mechanical Engineering, Jiangsu Ocean University, Lianyungang 222005;
    2. National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics&Astronautics, Nanjing 210016
  • Received:2022-05-18 Revised:2022-12-16 Online:2023-05-05 Published:2023-07-19

摘要: 针对高转速下液膜密封空化区界面发生强烈波动导致密封失稳的问题,为寻找波动抑制方法,考察了微流道槽底面剪切条件对液膜空化流场特性的影响。选用Schnerr-Sauer空化模型,运用Laminar和转捩SST模型,对比研究了不同转速槽底面无滑移和无剪切条件下的开启力Fo、泄漏率Q、空化占比和空化区速度分布规律。结果表明:流动模型的选择(Laminar和转捩SST模型)对FoQ的影响可以忽略,但对空化影响十分显著;液膜空化泡在膜厚方向呈不规则曲面状,在槽区膜厚中部位置的轴截面空化面积占比最大,无滑移时向非开槽端面单侧减小,无剪切时向密封端面双侧减小;可分开判定非槽区和槽区流态,非槽区始终为层流,槽区在11 300 r/min以下为层流,高于11 300 r/min为转捩流,若存在局部区域流动因子9/16<ζ<1或有空化发生,均应采用转捩SST模型;槽底面进行超滑水改性,可显著提高Fo(15 000 r/min时提高51.6%),降低Q(1 000 r/min时降低2.8%),有效降低空化率(15 000 r/min时空化体积占比降低超过80%),提升空化临界转速(从4 000 r/min提升至7 000 r/min)及液膜稳定性(空化区速度波动减弱,且槽区湍流形成临界转速由4 000 r/min提升至11 300 r/min),并使空化随转速的变化具有规律性、可预测性。此为提升液膜密封性能以及完善微流道流动理论和实现空化调控提供参考。

关键词: 液膜密封, 界面剪切, 空化, 高速, 微流场

Abstract: Aiming at the problem of seal instability caused by strong fluctuation at the interface of cavitation area of liquid film seal at high speed, in order to find a method to suppress the fluctuation, the effect of shear conditions at the bottom of microchannel groove on the characteristics of liquid film cavitation flow field was investigated. Schnerr-Sauer cavitation model was selected, and laminar and transition SST models were used to compare and study the opening force Fo, leakage rate Q, cavitation proportion and velocity distribution in cavitation area under the conditions of no slip and no shear at the bottom of groove at different speeds. The results show that the selection of flow model (laminar and transition SST model) has a negligible effect on Fo and Q, but has a significant effect on cavitation; the liquid film cavitation bubble presents an irregular curved surface in the film thickness direction, the cavitation area of the axial section at the middle of the film thickness in the groove region accounts for the largest proportion, and it decreases to the non-groove end face side when there is no slip and to both non-groove and groove end faces when there is no shear; the flow patterns in the non-groove region and groove region can be determined separately, the former is always laminar flow, while the latter is laminar flow when it is below 11 300 r/min and transition when it is higher than 11 300 r/min, and if there is a local area where the flow factor is 9/16<ζ<1 or if cavitation occurs in this area, transition SST model shall be adopted; the ultra slippery water modification on the bottom of the groove can significantly increase Fo (51.6% at 15 000 r/min), reduce Q (2.9% at 1 000 r/min), effectively reduce the cavitation rate (The proportion of cavitation volume at 15 000 r/min is reduced by more than 80%), improve the critical cavitation speed (from 4 000 r/min to 7 000 r/min) and liquid film stability (the velocity fluctuation in the cavitation area is weakened, and the critical speed of turbulence formation in the groove region is increased from 4 000 r/min to 11 300 r/min), and the variation of cavitation with speed is regular and predictable. The research results will provide a reference for further improving the liquid film seal performance, perfecting the related microchannel flow theory and realizing the cavitation control.

Key words: liquid film seal, interface shear, cavitation, high speed, microfluidic field

中图分类号: