[1] EBRAHIMI M, PAR M A.Twenty-year uninterrupted endeavor of friction stir processing by focusing on copper and its alloys[J].Journal of Alloys and Compounds, 2019, 781:1074-1090. [2] AKBARI MOUSAVI S A A, NIKNEJAD S T.An investigation on microstructure and mechanical properties of Nd:YAG laser beam weld of copper beryllium alloy[J].Metallurgical and Materials Transactions A, 2009, 40(6):1469-1478. [3] SUZUKI Y, OGURA T, TAKAHASHI M, et al.Low-current resistance spot welding of pure copper using silver oxide paste[J].Materials Characterization, 2014, 98:186-192. [4] 张昌青, 秦卓, 荣琛, 等.H62黄铜超薄板微搅拌摩擦焊接热机特征与接头组织性能[J].机械工程学报, 2020, 56(12):65-72.ZHANG Changqing, QIN Zhuo, RONG Chen, et al.Thermo-mechanical characteristics and microstructure and properties of micro-stir friction welding of H62 brass ultrathin plate[J].Journal of Mechanical Engineering, 2020, 56(12):65-72. [5] 杨超, 王英君, 徐艳利, 等.含Sc高强铝合金薄板TIG焊与FSW接头组织与性能对比研究[J].机械工程学报, 2020, 56(6):221-228.YANG Chao, WANG Yingjun, XU Yanli, et al.Microstructure and mechanical properties of TIG and friction stir welded joints of Sc-contained high strength aluminum alloy sheet[J].Journal of Mechanical Engineering, 2020, 56(6):221-228. [6] SUN Y F, FUJII H.Investigation of the welding parameter dependent microstructure and mechanical properties of friction stir welded pure copper[J].Materials Science and Engineering:A, 2010, 527(26):6879-6886. [7] KHODAVERDIZADEH H, HEIDARZADEH A, SAEID T.Effect of tool pin profile on microstructure and mechanical properties of friction stir welded pure copper joints[J].Materials & Design, 2013, 45:265-270. [8] KOCKS U F, MECKING H.Physics and phenomenology of strain hardening:the FCC case[J].Progress In Materials Science, 2003, 48(3):171-273. [9] KHODAVERDIZADEH H, MAHMOUDI A, HEIDARZADEH A, et al.Effect of friction stir welding (FSW) parameters on strain hardening behavior of pure copper joints[J].Materials & Design, 2012, 35:330-334. [10] XU Nan, UEJI R, FUJII H.Enhanced mechanical properties of 70/30 brass joint by rapid cooling friction stir welding[J].Materials Science and Engineering:A, 2014, 610:132-138. [11] WANG Yanfei, AN Jian, YIN Kun, et al.Ultrafine-grained microstructure and improved mechanical behaviors of friction stir welded Cu and Cu-30Zn joints[J].Acta Metallurgica Sinica (English Letters), 2018, 31(8):878-886. [12] HUANG K, LOGE R E.A review of dynamic recrystallization phenomena in metallic materials[J].Materials & Design, 2016, 111:548-574. [13] XU Nan, SONG Qining, BAO Yefeng.Investigation on microstructure development and mechanical properties of large-load and low-speed friction stir welded Cu-30Zn brass joint[J].Materials Science and Engineering:A, 2018, 726:169-178. [14] XU Nan, SONG Qining, BAO Yefeng.Improvement of microstructure and mechanical properties of C44300 tin brass subjected to double-pass rapid cooling friction stir welding[J].Journal of Alloys and Compounds, 2020, 834:155052. [15] MIRONOV S, SATO Y S, KOKAWA H.Microstructural evolution during friction stir-processing of pure iron[J].Acta Materialia, 2008, 56(11):2602-2614. [16] XU Nan, SONG Qining, BAO Yefeng, et al.Achieving good strength-ductility synergy of friction stir welded Cu joint by using large load with extremely low welding speed and rotation rate[J].Materials Science and Engineering:A, 2017, 687:73-81. [17] XU N, CHEN L, FENG R N, et al.Recrystallization of Cu-30Zn brass during friction stir welding[J].Journal of Materials Research and Technology, 2020, 9(3):3746-3758. [18] LIU F C, NELSON T W.In-situ grain structure and texture evolution during friction stir welding of austenite stainless steel[J].Materials & Design, 2017, 115:467-478. [19] WANG Wen, YUAN Shengnan, QIAO Ke, et al.Microstructure and nanomechanical behavior of friction stir welded joint of 7055 aluminum alloy[J].Journal of Manufacturing Processes, 2021, 61:311-321. [20] FONDA R W, KNIPLING K E.Texture development in friction stir welds[J].Science and Technology of Welding and Joining, 2011, 16:288-294. [21] LIU X C, SUN Y F, NAGIRA T, et al.Strain rate dependent micro-texture evolution in friction stir welding of copper[J].Materialia, 2019, 6:100302. [22] 许楠, 冯若男, 宋亓宁, 等.微观组织对镁合金FSW焊缝应变硬化行为的影响[J].焊接学报, 2020, 41(11):7-12.XU Nan, FENG Ruonan, SONG Qining, et al.Effects of microstructure on strain hardening behavior of friction stir welded magnesium alloy[J].Transactions of The China Welding Institution, 2020, 41(11):7-12. [23] CHEN X H, LU L.Work hardening of ultrafine-grained copper with nanoscale twins[J].Scripta Materialia, 2007, 57(2):133-136. [24] ROLLETT A D, KOCKS U F.A review of the stages of work hardening[J].Solid State Phenomena, 1993, 35-36:1-18. [25] LU Lei, SHEN Yongfeng, CHEN Xianhua, et al.Ultrahigh strength and high electrical conductivity in copper[J].Science, 2004, 304:422-426. [26] LU K, LU L, SURESH S.Strengthening materials by engineering coherent internal boundaries at the nanoscale[J].Science, 2009, 324:349-352. [27] ZHU Ting, LI Ju, SAMANTA A, et al.Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals[J].Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(9):3031-3036. |