[1] KAWASHIMA F,IGARI T,MIYOSHI Y,et al. High temperature strength and inelastic behavior of plate-fin structures for HTGR[J]. Nuclear Engineering & Design,2007,237(6):591-599. [2] TU S T,ZHOU G Y. Compact heat exchangers in clean energy systems,in:Jerry Yan(Eds.),Handbook of clean energy systems[M]. Chichester,West Sussex:John Wiley & Sons,Ltd,2015. [3] BOGGIA S,Rüd K. Intercooled recuperated aero engine[R]. Dresden:Dglr Paper,2004. [4] KAWASHIMA F,IGARI T,MIYOSHI Y,et al. High temperature strength and inelastic behavior of plate-fin structures for HTGR[J]. Nuclear Engineering and Sesign,2007,237(6):591-599. [5] 张洪涛,陈怀宁,吴昌忠. 不锈钢及其板翅式换热器钎焊技术[J]. 宇航材料工艺,2005,35(4):12-18. ZHANG Hongtao,CHEN Huaining,WU Changzhong. Brazing technique for stainless steels and stainless steel plate-fin heat exchanger[J]. Aerospace Materials & Technology,2005,35(4):12-18. [6] 涂善东. 高温结构完整性原理[M]. 北京:科学出版社,2003. TU Shantung. High temperature structural integrity[M]. Beijing:Science Press,2003. [7] 国家自然科学基金会. 机械工程学科发展战略报告[M]. 北京:科学出版社,2010. National Natural Science Foundation. Strategy report of mechanical engineering discipline development[M]. Beijing:Science Press,2010. [8] IGARI T,KAWASHIMA F,MIZOKAMI Y,et al. Inelastic deformation and creep-fatigue life of plate-fin structures[M]//Creep Damage Mechanics to Homogenization Methods. Switzerland:Springer,2015. [9] TU S T,ZHOU G Y. Creep of brazed plate-fin structures in high temperature compact heat exchangers[J]. Frontiers of Mechanical Engineering in China,2009,4(4):355-362. [10] SHI D,DONG C,YANG X,et al. Experimental investigations on creep rupture strength and failure mechanism of vacuum brazed joints of a DS superalloy at elevated temperature[J]. Materials Science and Engineering:A,2012,545:162-167. [11] ZHANG Y C,JIANG W,TU S T,et al. Analysis of creep crack growth behavior of the brazed joint using continuum damage mechanics approach[C]//ASME 2018 Pressure Vessels and Piping Conference,July 15-20,2018,Prague,Czech Republic. [12] ARAFIN M,MEDRAJ M,Turner D,et al. Transient liquid phase bonding of Inconel 718 and Inconel 625 with BNi-2:Modeling and experimental investigations[J]. Materials Science and Engineering:A,2007,447(1):125-133. [13] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T 2039-2012金属材料单轴拉伸蠕变试验方法[S]. 北京:中国标准出版社,2012. General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China,Standardization Administration of the People's Republic of China. GB/T 2039-2012 Metallic materials-Uniaxial creep testing method in tension[S]. Beijing:Standards Press of China,2012. [14] 乐适. 高温下不锈钢板翅结构与时间相关的力学性能研究[D]. 上海:华东理工大学,2013. LE Shi. Study of time-dependent mechanical behavior of stainless steel plate-fin structure under high temperature[D]. Shanghai:East China University of Science and Technology,2013. [15] Luo Y,Jiang W,Zhang Y C,et al. Creep rupture behavior of Hastelloy C276-BNi2 brazed joint[J]. Materials Science and Engineering:A,2018,711:223-232. [16] 陈建钧,史进,涂善东. BNi-2/0Cr18Ni9钎焊接头高温蠕变行为的试验研究及数值模拟[J]. 焊接学报,2006,27(3):39-43. Chen Jianjun,Shi Jin,TU Shantung. Exprimental investigation and finite element simulation the high temperature creep behaviors of BNi-2/0Cr18Ni9 brazed joint[J]. Transactions of the China Welding Institution,2006,27(3):39-43. [17] 史进. 不锈钢钎焊接头高温强度的研究[D]. 南京:南京工业大学,2004. SHI Jin. Investigation the high temperature strength of the stainless steel brazed joint[D]. Nanjing:Nanjing Tech University,2004. [18] Luo Y,Zhang Q,Jiang W,et al. A more appropriate FE model to predict the creep crack initiation and growth behavior of brazed joint[J]. Engineering Fracture Mechanics,2018,204:72-86. [19] Kimura K,Kushima H,Sawada K. Long-term creep deformation property of modified 9Cr-1Mo steel[J]. Materials Science and Engineering:A,2009,510:58-63. [20] Kim W G,Park J Y,Ekaputra I,et al. Creep deformation and rupture behavior of Alloy 617[J]. Engineering Failure Analysis,2015,58:441-451. [21] Mathew M D,Parameswaran P,Rao K B S. Microstructural changes in alloy 625 during high temperature creep[J]. Materials Characterization,2008,59(5):508-513. [22] Mathew M D,Parameswaran P,Bhanu S R K. Microstructural changes in alloy 625 during high temperature creep[J]. Materials Characterization,2008,59(5):508-513. [23] Yu Q M,Wang Y,Wen Z X,et al. Notch effect and its mechanism during creep rupture of nickel-base single crystal superalloys[J]. Materials Science & Engineering A,2009,520(1):1-10. [24] Goyal S,Laha K. Creep life prediction of 9Cr-1Mo steel under multiaxial state of stress[J]. Materials Science & Engineering A,2014,615(615):348-360. [25] Konish H. Simplified estimation of creep-rupture strength for notched tensile specimens of austenitic stainless steels[J]. Journal of Pressure Vessel Technology (Trans. ASME),1988,110(3):314-321. [26] Gong J G,Xuan F Z. Notch behavior of components under the stress-controlled creep-fatigue condition:Weakening or strengthening?[J]. Journal of Pressure Vessel Technology,2017,139(1):011407. [27] American Society of Testing Materials. ASTM E1457-15 Standard test method for measurement of creep crack growth times in metals[S]. West Conshohocken,PA:ASTM International,2015. [28] Zhang Y C,Jiang W,Tu S T,et al. Experimental investigation and numerical prediction on creep crack growth behavior of the solution treated Inconel 625 superalloy[J]. Engineering Fracture Mechanics,2018,199:327-342. [29] 谈建平. 纳入拘束效应的含裂纹结构蠕变寿命评价方法研究[D]. 上海:华东理工大学,2014. TAN Jianping. Creep life assessment of structures containing crack incorporating constraint effect[D]. Shanghai:East China University of Science and Technology,2014. [30] Sklenička V,Kuchařová K,Svoboda M,et al. Long-term creep behavior of 9-12% Cr power plant steels[J]. Materials Characterization,2003,51(1):35-48. [31] Yu J,Sun X,Jin T,et al. High temperature creep and low cycle fatigue of a nickel-base superalloy[J]. Materials Science and Engineering:A,2010,527(9):2379-2389. [32] Kachanov L. On rupture time under condition of creep[J]. Izvestia Akademi Nauk USSR,Otd. Techn. Nauk,1958,8:26-31. [33] Rabotnov Y N. Creep of structural elements[M]. Moscow:Nauka,1966. [34] Zhao B,Wang X S,Feng Z. Experiment and simulation of creep damage for duralumin alloy 2A12[J]. Materials Science and Engineering:A,2009,513:91-96. [35] Goyal S,Laha K,Das C,et al. Finite element analysis of uniaxial and multiaxial state of stress on creep rupture behaviour of 2.25 Cr-1Mo steel[J]. Materials Science and Engineering:A,2013,563:68-77. [36] May D. The TLC method for modeling creep deformation and rupture[D]. Florida:University of Central Florida Orlando,2014. [37] Hyde T,Becker A,Sun W,et al. Finite-element creep damage analyses of P91 pipes[J]. International Journal of Pressure Vessels and Piping,2006,83(11-12):853-863. [38] Sdobyrev V. Long-term strength of ÉI437B alloy in a complex stress state[J]. Izv. Akad. Nauk SSSR. OTN. Mekh. Mashinostr,1958(4):92-97. [39] Murakami S,Liu Y. Mesh-dependence in local approach to creep fracture[J]. International Journal of Damage Mechanics,1995,4(3):230-250. [40] Liu Y,Murakami S. Damage localization of conventional creep damage models and proposition of a new model for creep damage analysis[J]. JSME International Journal Series A,1998,41(1):57-65. [41] Murakami S,Liu Y,Mizuno M. Computational methods for creep fracture analysis by damage mechanics[J]. Computer Methods in Applied Mechanics and Engineering,2000,183(1):15-33. [42] Yatomi M,Davies C M,Nikbin K M. Creep crack growth simulations in 316H stainless steel[J]. Engineering Fracture Mechanics,2008,75(18):5140-5150. [43] O'dowd N P,Nikbin K M,Biglari F R. Creep crack initiation in a weld steel:Effects of residual stress[C]//2005 ASME Pressure Vessels and Piping Division Conference,July 17-21,2005,Denver, Colorado USA. [44] Rice J R,Tracey D M. On the ductile enlargement of voids in triaxial stress fields[J]. Journal of the Mechanics and Physics of Solids,1969,17(3):201-217. [45] Spindler M. The multiaxial creep ductility of austenitic stainless steels[J]. Fatigue & Fracture of Engineering Materials & Structures,2004,27(4):273-281. [46] Cocks A,Ashby M. Intergranular fracture during power-law creep under multiaxial stresses[J]. Metal Science,1980,14(8-9):395-402. [47] Zhang Y C,Jiang W,Tu S T,et al. Simulation of creep and damage in the bonded compliant seal of planar solid oxide fuel cell[J]. International Journal of Hydrogen Energy,2014,39(31):17941-17951. [48] Wen J F,Tu S T,Gao X L,et al. Simulations of creep crack growth in 316 stainless steel using a novel creep-damage model[J]. Engineering Fracture Mechanics,2013,98:169-184. [49] Wen J F,Tu S T. A multiaxial creep-damage model for creep crack growth considering cavity growth and microcrack interaction[J]. Engineering Fracture Mechanics,2014,123:197-210. [50] Zhang Y C,Jiang W,Tu S T,et al. Creep crack growth behavior analysis of the 9Cr-1Mo steel by a modified creep-damage model[J]. Materials Science and Engineering:A,2017,708:68-76. [51] Goyal S,Laha K,Das C R. Effect of constraint on creep behavior of 9Cr-1Mo steel[J]. Metallurgical and Materials Transactions A,2014,45A(2):619-632. [52] Oh C S,Kim N H,Kim Y J,et al. A finite element ductile failure simulation method using stress-modified fracture strain model[J]. Engineering Fracture Mechanics,2011,78(1):124-137. [53] Kim N H,Oh C S,Kim Y J,et al. Comparison of fracture strain based ductile failure simulation with experimental results[J]. International Journal of Pressure Vessels and Piping,2011,88(10):434-447. [54] Kim N H,Kim Y J,DAVIES C M,et al. Creep failure simulations for 316H at 550℃[C]//Proc. ASME-PVP 15-19 July Toronto,Ontario,Canada:Proceedings of the International Conference on Pressure Vessels and Piping,2012. [55] Tu S T,Zhou G Y. Creep of brazed plate-fin structures in high temperature compact heat exchangers[J]. Frontiers of Mechanical Engineering in China,2009,4(4):355. [56] Riedel H. Fracture at high temperatures[M]. Berlin:Springer-Verlag,1987. [57] 徐鸿,袁军,倪永中. 基于Norton-Bailey模型的P92钢初期蠕变过程分析[J]. 材料科学与工程学报,2013,31(4):568-571. XU Hong,YUAN Jun,NI Yongzhong. Primary creep process of P92 steel based on Norton-Bailey model[J]. Journal of Materials Science and Engineering,2013,31(4):568-571. [58] 张玉财. 多轴应力状态下钎焊接头蠕变损伤与裂纹扩展研究[D]. 上海:华东理工大学,2016. ZHANG Yucai. Creep damage and crack growth analysis of the brazed joint under multi-axial stress state[D]. Shanghai:East China University of Science and Technology,2016. [59] Jiang W,Zhang W,Zhang G,et al. Creep damage and crack initiation in P92-BNi2 brazed joint[J]. Materials & Design,2015,72:63-71. [60] Luo Y,Jiang W,Zhang Y c,et al. A new damage evolution model to estimate the creep fracture behavior of brazed joint under multiaxial stress[J]. International Journal of Mechanical Sciences,2018,149:178-189. [61] 王志峰. 多材料结构与时间相关的蠕变行为研究[D]. 上海:华东理工大学,2007. WANG Zhifeng. Time-dependent fracture behaviour of the multi-materials structures[D]. Shanghai:East China University of Science and Technology,2007. [62] Masaaki T,Kiyoshi K,Koichi Y. Effect of specimen size on creep crack growth rate using ultra-large CT specimens for 1Cr-Mo-V steel[J]. Engineering Fracture Mechanics,1991,40(2):311-321. [63] He J Z,Wang G Z,Tu S T,et al. Characterization of 3-D creep constraint and creep crack growth rate in test specimens in ASTM-E1457 standard[J]. Engineering Fracture Mechanics,2016,168131-146. [64] Tan J P,Tu S T,Wang G Z,et al. Effect and mechanism of out-of-plane constraint on creep crack growth behavior of a Cr-Mo-V steel[J]. Engineering Fracture Mechanics,2013,99(1):324-334. [65] Nikbin K. Justification for meso-scale modelling in quantifying constraint during creep crack gr owth[J]. Materials Science & Engineering A,2004,365(1):107-113. [66] Jiang W,Luo Y,Zhang B,et al. Characterization of creep constraint effect for brazed joint specimens at crack tip by new constraint parameter As[J]. Theoretical and Applied Fracture Mechanics,2020,109:102707. [67] Wang G Z,Liu X L,Xuan F Z,et al. Effect of constraint induced by crack depth on creep crack-tip stress field in CT specimens[J]. International Journal of Solids & Structures,2010,47(1):51-57. [68] Tan J P,Wang G Z,Tu S T,et al. Load-independent creep constraint parameter and its application[J]. Engineering Fracture Mechanics,2014,116(1):41-57. [69] Ma H S,Wang G Z,Xuan F Z,et al. Unified characterization of in-plane and out-of-plane creep constraint based on crack-tip equivalent creep strain[J]. Engineering Fracture Mechanics,2015,142(10):1-20. [70] 肖承燃. Inconel625BNi-2钎焊接头强韧化机理研究[D]. 青岛:中国石油大学(华东),2020. XIAO Chengran. Study on strengthening and toughening mechanism of Inconel625/BNi-2 brazed joint[D]. Qingdao:China University of Petroleum (East China),2020. [71] Zhang Y C,Yu X T,Jiang W,et al. Elastic modulus and hardness characterization for microregion of Inconel 625/BNi-2 vacuum brazed joint by high temperature nanoindentation[J]. Vacuum,2020,181:109582. |