• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2021, Vol. 57 ›› Issue (5): 231-241.doi: 10.3901/JME.2021.05.231

• 数字化设计与制造 • 上一篇    下一篇

扫码分享

网版印刷导电油墨转移机理及仿真研究

刘世朴1,2,3, 李艳1,2,3, 田野1,2,3, 袁英才1,2   

  1. 1. 北京印刷学院数字化印刷装备北京市重点实验室 北京 102600;
    2. 北京印刷学院印刷装备北京市高等学校工程研究中心 北京 102600;
    3. 北京市印刷电子工程技术研究中心 北京 102600
  • 收稿日期:2020-01-10 修回日期:2020-11-05 出版日期:2021-03-05 发布日期:2021-04-28
  • 通讯作者: 李艳(通信作者),女,1965年出生,教授,硕士研究生导师。主要研究方向为柔性电子印刷的工艺与装备、TRIZ理论及应用、印刷装备创新设计。E-mail:137330424@qq.com
  • 作者简介:刘世朴,男,1994年出生。主要研究方向为精细丝网印刷电子成型机理。E-mail:1456636557@qq.com

Screen Printing Conductive Ink Transfer Mechanism and Simulation Research

LIU Shipu1,2,3, LI Yan1,2,3, TIAN Ye1,2,3, YUAN Yingcai1,2   

  1. 1. Beijing Key Laboratory of Digitization Printing Equipment, Beijing Institute of Printing, Beijing 102600;
    2. Research Center of Printing Equipment of Beijing Universities, Beijing Institute of Printing, Beijing 102600;
    3. Beijing Engineering Research Center of Printed Electronics, Beijing 102600
  • Received:2020-01-10 Revised:2020-11-05 Online:2021-03-05 Published:2021-04-28

摘要: 为了清晰直观地认识油墨填墨机理和网版回弹机理,根据网版印刷油墨转移过程,建立其理论分析模型,利用流体动力学来分析填墨过程中油墨出口速度与压强变化之间的函数关系,利用弹性流体动力润滑来分析楔形区动压与油墨产生的回弹力之间的影响变化;并利用Fluent对分析结果进行仿真验证。理论结果表明,在楔形区动压为8×105 Pa时,导电油墨在网孔两端处产生的回弹力明显大于中间位置,且在20~30 μm位置处产生的回弹力基本不发生变化;仿真结果表明,当刮刀速度增加时,油墨出口速度增加,但压强变化却呈现减小的趋势,这证明了网版印刷的刮刀速度既不能太大,也不能太小,最佳速度范围为40~65 m/s;在不同楔形区动压下,网孔处油墨产生的回弹力两端位置都大于中间位置,且在20~30 μm位置处基本不发生变化;承印物上最大落墨量出现在楔形区动压范围为7×105~9×105 Pa,占网孔体积的95.6%,约为0.189 mm3。数值模拟与理论推导结果相吻合,为了保证承印物上有足够的落墨量,可以适当增加楔形区动压来提高印刷质量。

关键词: 导电油墨, 落墨量, 转移机理, 网版印刷, 楔形区动压

Abstract: In order to clearly and intuitively understand the mechanism of the ink filling mechanism and the screen rebound mechanism. According to the screen-printing ink transfer process, the theoretical analysis model is established. The fluid dynamics is used to analyze the function relationship between the ink outlet speed and pressure change during the ink filling process. The elastohydrodynamic lubrication is used to analyze the influence change between the dynamic pressure of the wedge zone and the rebound force generated by the ink; and Fluent is used to verify the analysis results. The theoretical results show that when the dynamic pressure in the wedge area is 8×105Pa, the resilience of conductive ink at both ends of the mesh is significantly greater than that at the middle position, and the resilience at the position of 20- 30 μm does not change basically. The simulation results show that when scraping with the increase of knife speed, the ink outlet speed increases, but the pressure change shows a decreasing trend. This proves that the scraper speed of screen printing cannot be too large or too small, and there is an optimal speed range, about 40-65 m/s. Under different dynamic pressure of wedge area, the two ends of ink resilience at the mesh are greater than the middle position, and there is no change in the position of 20-30 μm. The maximum ink drop on the substrate occurs in the wedge area, and the dynamic pressure is 7×105-9×105Pa, it accounts for 95.6% of the mesh volume, which is about 0.189 3 mm3. In order to ensure enough ink drop on the substrate, the dynamic pressure of wedge area can be increased to improve the printing quality.

Key words: conductive ink, drop volume, transfer mechanism, screen printing, dynamic pressure in wedge region

中图分类号: