[1] JOHNSON G R,COOK W H. A constitutive model and data for metals subjected to large strains,high strain rates and high temperature[C]//Proceedings of the 7th International Symposium on Ballistics. The Hague,Netherlands,1983:541-547. [2] KHAN A,LIANG R. Behaviors of three BCC metal over a wide range of strain rates and temperatures[J]. International Journal of Plasticity,1999,15(10):1089-1109. [3] ZERILLI F J,ARMSTRON R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations[J]. Journal of Applied Physics,1987,61(5):1816-1825. [4] 刘再得,王冠,冯银成,等. 6061铝合金高应变速率本构参数研究[J].矿冶工程,2011,31(6):120-123. LIU Zaide,WANG Guan,FENG Yincheng,et al. High-strain-rate constitutive parameters of 6061 aluminum alloys[J]. Mining and metallurgical engineering,2011,31(6):120-123. [5] 赵培峰,任广升,沈智,等. 6061铝合金热压缩变形条件对流变应力的影响及本构方程的研究[J].塑性工程学报,2017,14(6):130-133. ZHAO Peifeng,REN Guangsheng,SHEN Zhi,et al. Influence of hot compressive deformation conditions of 6061 aluminum alloy on flow stress and research on its constitutive equation[J]. Journal of plasticity engineering,2007,14(6):130-133. [6] 杨庆年,陈孝珍,肖新科,等. Lode相关断裂准则在6061-T6511H铝合金Taylor杆断裂预报中的应用[J].振动与冲击,2018,37(2):142-149. YANG Qingnian,CHEN Xiaozhen,XIAO Xinke,et al. Application of Lode dependent fracture criterion in predicting fracture of 6061-T6511H aluminium alloy Taylor rods[J]. Journal of vibration and shock,2018,37(2):142-149. [7] MANES A,PERONI L,SCAPIN M,et al. Analysis of strain rate behavior of an Al 6061-T6 alloy[J]. Procedia Engineering,2011,10:3477-3482. [8] XIAO Xinke,MU Zhongcheng,PAN Hao,et al. Effect of the Lode parameter in predicting shear cracking of 2024-T351 aluminum alloy Taylor rods[J]. International Journal of Impact Engineering,2018,120:185-201. [9] 张伟,魏刚,肖新科. 2A12铝合金本构关系和失效模型[J].兵工学报,2013,34(3):276-282. ZHANG Wei,WEI Gang,XIAO Xinke. Constitutive relation and fracture criterion of 2A12 aluminum alloy[J]. Acta Armamentarii,2013,34(3):276-282. [10] 张伟,肖新科,魏刚. 7A04铝合金的本构关系和失效模型[J].爆炸与冲击,2011,31(1):81-87. ZHANG Wei,XIAO Xinke,WEI Gang. Constitutive relation and fracture model of 7A04 aluminum alloy[J]. Explosion and Shock Waves,2011,31(1):81-87. [11] XIAO Xinke,WANG Yaopei,VLADISLAV V V,et al. Effect of Lode angle in predicting the ballistic resistance of Weldox 700 E steel plates struck by blunt projectiles[J]. International Journal of Impact Engineering,2019,128:46-71. [12] XIAO Xinke,PAN Hao,BAI Yuanli,et al. Application of the modified Mohr-Coulomb fracture criterion in predicting the ballistic resistance of 2024-T351 aluminum alloy plates impacted by blunt projectiles[J]. International Journal of Impact Engineering,2019,123:26-37. [13] WEI Gang,ZHANG Wei,HUANG Wei,et al. Effect of strength and ductility on deformation and fracture of three kinds of aluminum alloys during Taylor tests[J]. International Journal of Impact Engineering,2014,73:75-90. [14] 刘本学,焦炳银,肖新科,等. Lode角参数对Taylor撞击数值仿真的影响[J].兵器材料科学与工程,2019,42(2):1-5. LIU Benxue,JIAO Bingyin,XIAO Xinke, et al. Influence of lode parameter on numerical simulation of Taylor impact[J]. Ordnance Material Science and Engineering,2019,42(2):1-5. [15] RECHT R F,IPSON T W. Ballistic perforation dynamics[J]. International Journal of Applied Mechanics,1963,30:384-390. |