[1] SVENUNGSSON J,CHOQUET I,KAPLAN A F H. Laser welding process:A review of keyhole welding modelling[J]. Physics Procedia,2015,78:182-191. [2] AMARA E H,BENDIB A. Modelling of vapour flow in deep penetration laser welding[J]. Journal of Physics D:Applied Physics,2002,35(3):272-280. [3] DASGUPTA A K,MAZUMDER J,LI P. Physics of zinc vaporization and plasma absorption in CO2 laser wel-ding[J]. Journal of Applied Physics,2007,102(5):053108. [4] KAWAHITO Y,MATSUMOTO N,MIZUTANI M,et al. Characterisation of plasma induced during high power fibre laser welding of stainless steel[J]. Science and Tech-nology of Welding and Joining,2008,13(8):744-748. [5] WU Dongsheng,NGUYEN A,TASHIRO S,et al. Elucidation of the weld pool convection and keyhole formation mechanism in the keyhole plasma arc wel-ding[J]. International Journal of Heat and Mass Transfer,2019,131:920-931. [6] JIAN Xiaoxia,WU Chuansong. Influence of Fe vapour on weld pool behavior of plasma arc welding[J]. Acta Metallurgica Sinica,2016,52(11):1467-1476. [7] JIAN Xiaoxia,WU Chuansong. Determination of arc pressure and current density on the molten pool surface in plasma arc welding[J]. China Welding,2014,23(3):78-82. [8] WU Dongsheng,TASHIRO S,HUA Xueming,et al. Analysis of the energy propagation in the keyhole plasma arc welding using a novel fully coupled plasma arc-keyhole-weld pool model[J]. International Journal of Heat and Mass Transfer,2019,141:604-614. [9] XU Bing,JIANG Fan,CHEN Shujun,et al. Numerical analysis of plasma arc physical characteristics under additional constraint of keyhole[J]. Chinese Physics B,2018,27(3):034701. [10] LI Yan,FENG Yanhui,LI Yafei,et al. Plasma arc and weld pool coupled modeling of transport phenomena in keyhole welding[J]. International Journal of Heat and Mass Transfer,2016,92:628-638. [11] LAUNDER B E,SPALDING D B. The numerical computation of turbulent flows[M]. Numerical prediction of flow,heat transfer,turbulence and combustion. Pergamon,1983:96-116. [12] 张旺,华学明,潘成刚,等.基于Stark展宽的TIG焊接电弧三维电子密度测量研究[J].光谱学与光谱分析,2012,32(10):2601-2604. ZHANG Wang,HUA Xueming,PAN Chenggang,et al. The reconstruction of welding arc 3D electron density distribution based on stark broadening[J]. Spectroscopy and Spectral Analysis,2012,32(10):2601-2604. [13] 斯红,华学明,张旺,等.基于Boltzmann光谱法的焊接电弧温度场测量计算[J].光谱学与光谱分析,2012,32(9):2311-2313. SI Hong,HUA Xueming,ZHANG Wang,et al. Welding arc temperature field measurements based on Boltzmann spectrometry[J]. Spectroscopy and Spectral Analysis,2012,32(9):2311-2313. [14] HIRAOKA K,SHIWAKU T,OHJI T. Determining temperature distributions of gas tungsten arc (TIG) plasma by spectroscopic methods[J]. Welding Interna-tional,1997,11(9):688-696. [15] FAN H G,KOVACEVIC R. Keyhole formation and collapse in plasma arc welding[J]. Journal of Physics D:Applied Physics,1999,33:2902-2909. [16] WU Dongsheng,TASHIRO S,HUA Xueming,et al. A novel electrode-arc-weld pool model for studying the keyhole formation in the keyhole plasma arc welding process[J]. Journal of Physics D:Applied Physics,2019,52:165203. [17] NGUYEN A V,WU Dongsheng,TASHIRO S,et al. Undercut formation mechanism in keyhole plasma arc welding[J]. Welding Journal,2019,98(7):204-212. |