[1] 杜善义,冷劲松,王殿富. 智能材料系统和结构[M]. 北京:科学出版社,2001. DU Shanyi,LENG Jinsong,WANG Dianfu. Intelligent material system and structure[M]. Beijing:Science Press,2001. [2] 龙晋明,周善佑. 热处理对Cu-26.23Zn-3.92Al-0.033B形状记忆合金Ms点的影响[J]. 上海有色金属,1989(4):1-7. LONG Jinming,ZHOU Shanyou. Effect of heat treatment on Ms point of Cu-26.23Zn-3.92Al-0.033B shape memory alloy[J].Shanghai Nonferrous Metals,1989(4):1-7. [3] MORGAN N B. Medical shape memory alloy applications-the market and its products[J]. Materials Science & Engineering A,2004,378(1):16-23. [4] LIU Yong,HUMBEECK J V,STALMANS R,et al. Some aspects of the properties of NiTi shape memory alloy[J]. Journal of Alloys and Compounds,1997,247(1-2):115-121. [5] LIANG C,ROGERS C A J. Design of shape memory alloy springs with applications in vibration control[J]. Journal of Vibration and Acoustics,1993,115:129-135. [6] LIU Xingjun,OHNUMA I,KAINUMA R,et al. Phase equilibria in the Cu-rich portion of the Cu-Al binary system[J]. Journal of Alloys and Compounds,1996,235(2):256-261. [7] WEINERT K,PETZOLDT V. Machining of NiTi based shape memory alloys[J]. Materials Science & Engineering A,2004,378(1-2):180-184. [8] WU S K,LIN H,CHEN C. A study on the machinability of a Ti49.6Ni50.4 shape memory alloy[J]. Materials Letters,1999,40(1):27-32. [9] SARI U. Influences of 2.5wt% Mn addition on the microstructure and mechanical properties of Cu-Al-Ni shape memory alloys[J]. International Journal of Minerals Metallurgy and Materials,2010,17(2):192-198. [10] PEREZ-LANDAZABAL J I,RECARTE V,et al. Study of the stability and decomposition process of the β phase in Cu-Al-Ni shape memory alloys[J]. Materials Science & Engineering A,2006,438(5):734-737. [11] DALLE F,PERRIN E,VERMAUT P,et al. Interface mobility in Ni49.8Ti42.2Hf8 shape memory alloy[J]. Acta Materialia,2002,50(14):3557-3565. [12] RECARTE V,PEREZ-LANDAZABAL J I,NO M L,et al. Study by resonant ultrasound spectroscopy of the elastic constants of the β phase in Cu-Al-Ni shape memory alloys[J]. Materials Science & Engineering A,2004,370(1):488-491. [13] 李周,汪明朴,徐根应. 铜基形状记忆合金材料[M]. 长沙:中南大学出版社,2010. LI Zhou,WANG Mingpu,XU Genying. Copper-based shape memory alloy materials[M]. Changsha:central south University Press,2010. [14] MERCIER O,MELTON K N,GREMAUD G,et al. Single-crystal elastic constants of the equiatomic NiTi alloy near the martensitic transformation[J]. Journal of Applied Physics,1980,51(3):1833-1834. [15] 楚树成,马永庆. Cu-Al-Ni-Ti合金的微观组织及其富Ti相的确定[J]. 功能材料,1991(6):334-337. CHU Shucheng,MA Yongqing. Determination of microstructure and Ti-rich phase of Cu-Al-Ni-Ti alloy[J]. Functional Materials,1991(6):334-337. [16] DUTKIEWICZ J,CZEPPE T,MORGIEL J. Effect of titanium on structure and martensic transformation in rapidly solidified Cu-Al-Ni-Mn-Ti alloys[J]. Materials Science & Engineering A,1999,s 273-275(3):703-707. [17] LOJEN G,GOJIC M,ANZEL I. Continuously cast Cu-Al-Ni shape memory alloy-properties in as-cast condition[J]. Journal of Alloys and Compounds,2013,580:497-505. [18] CAVA R,GIS D,BOLFARINI C,et al. Spray forming of Cu-11.85Al-3.2Ni-3Mn (wt%) shape memory alloy[J]. Journal of Alloys and Compounds,2014,615:S602-S606. [19] LI Wei,LIU Jie,WEN Shifeng,et al. Crystal orientation,crystallographic texture and phase evolution in the Ti-45Al-2Cr-5Nb alloy processed by selective laser melting[J]. Materials Characterization,2016,113:125-133. [20] GUSTMANN T,SANYOS J M D,GARGARELLA P,et al. Properties of Cu-based shape-memory alloys prepared by selective laser melting[J]. Shape Memory & Superelasticity,2017,3(1):24-36. [21] GUSTMANN T,NEVES A,U. KUHN,et al. Influence of processing parameters on the fabrication of a Cu-Al-Ni-Mn shape-memory alloy by selective laser melting[J]. Additive Manufacturing,2016,11:23-31. [22] SILVA M R D,GARGAGARELLA P,GUSTMANN T,et al. Laser surface remelting of a Cu-Al-Ni-Mn shape memory alloy[J]. Materials Science & Engineering A,2016,661:61-67. [23] LOJEN G,ANZEL I,KNEISSL A,et al. Microstructure of rapidly solidified Cu-Al-Ni shape memory alloy ribbons[J]. Journal of Materials Processing Technology,2005,162-163:220-229. [24] MA Liang,BIN Hongzan. Temperature and stress analysis and simulation in fractal scanning-based laser sintering[J]. International Journal of Advanced Manufacturing Technology,2007,34(9-10):898-903. [25] THIJS L,KEMPEN K,KRUTH J P,et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSiOMg powder[J]. Acta Materialia,2013,61(5):1809-1819. [26] XU Wei,BRANDT M,SUN Shoujin,et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition[J]. Acta Materialia,2015,85:74-84. [27] SAUD S N,HAMZAH E,ABUBAKAR T,et al. Influence of Ti additions on the martensitic phase transformation and mechanical properties of Cu-Al-Ni shape memory alloys[J]. Journal of Thermal Analysis & Calorimetry,2014,118(1):111-122. [28] SAMPATH V. Studies on the effect of grain refinement and thermal processing on shape memory characteristics of Cu-Al-Ni alloys[J]. Smart Materials & Structures,2005,14(5):S253-S260. [29] 刘记立. 柱状晶组织Cu71Al18Mn11形状记忆合金的性能及制备加工基础研究[D]. 北京:北京科技大学,2016. LIU Jili. Basic Research on properties and processing of columnar crystalline Cu71Al18Mn11 shape memory alloy[D]. Beijing:Beijing University of Science and Technology,2016. [30] LIU Jili,HUANG Haiyou,XIE Jianxin. The roles of grain orientation and grain boundary characteristics in the enhanced superelasticity of Cu71.8Al17.8Mn10.4 shape memory alloys[J]. Materials & Design,2014,64:427-433. [31] 徐祖耀. 马氏体相变与马氏体[M]. 北京:科学出版社,1999. XU Zuyao. Martensite transformation and martensite[M]. Beijing:Science Press,1999. [32] 左舜贵,金学军,金明江. 高温形状记忆合金的研究进展[J]. 机械工程材料,2014,38(1):1-5. ZUO Shungui,JIN Xuejun,JIN Mingjiang. Advances in high temperature shape memory alloys[J]. Mechanical Engineering Materials,2014,38(1):1-5. |