[1] DAI J S,JONES J R. Kinematics and mobility analysis of carton folds in packing manipulation based on the mechanism equivalent[J]. J. Mech. Eng. Sci.,2002,216(10):959-970. [2] BALKCOM D J,MASON M T. Robotic origami folding[J]. Int. J. Rob. Res.,2008,27(5):613-627. [3] Online Crease Pattern Gallery,LANG ORIGAMI[EB/OL].[2018-10-12]. https://langorigami.com/article/crease-patterns-for-folders/. [4] CHEN Y,PENG R,YOU Z. Origami of thick panels[J]. Science,2015,349(6246):396-400. [5] HUFFMAN D A. Curvature and creases:A primer on paper[J]. IEEE Trans. Comput.,1976,C-25(10):1010-1019. [6] FUCHS D,TABACHNIKOV S. More on paperfolding[J]. Am. Math. Mon.,1999,106(1):27-35. [7] REDONT P. Representation and deformation of developable surfaces[J]. Comput. Aided Des.,1989,21(1):13-20. [8] BO P,WANF W. Geodesic-controlled developable surfaces for modeling paper bending[J]. Comp. Graph. Forum,2007,26(3):365-374. [9] KOSCHITZ D. Computational design with curved creases:David Huffman's approach to paperfolding[D]. Boston:MIT,2014. [10] KILIAN M,FLOERY S,MITRA N J,et al. Curved folding[J]. ACM Trans. Graph.,2008,27(3):1-9. [11] KERGOSIEN Y,GOTODA H,KUNII T. Bending and creasing virtual paper[J]. IEEE Comput. Graph. Appl.,1994,14(1):40-48. [12] WANG F,GONG H,CHEN X,et al. Folding to curved surfaces:A generalized design method and mechanics of origami-based cylindrical structures[J]. Sci. Rep.,2016,6(1):33312-9. [13] TACHI T. Composite rigid-foldable curved origami structure[C]//The First Conference Transformables,Sept. 18-20,2013,Seville,Spain,2013:1-6. [14] DUDTE L H,VOUGA E,TACHI T,et al. Programming curvature using origami tessellations[J]. Nat. Mater.,2016,15(5):583-588. [15] NELSON T G,LANG R J,PEHRSON N A,et al. Facilitating deployable mechanisms and structures via developable lamina emergent arrays[J]. ASME J. Mech. Rob.,2016,8(3):031006-9. |