• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2020, Vol. 56 ›› Issue (4): 151-159.doi: 10.3901/JME.2020.04.151

• 运载工程 • 上一篇    下一篇

基于旋转热流法和均布热流法的环块摩擦温度场仿真分析

张金煜, 虞大联, 刘韶庆, 田爱琴   

  1. 中车青岛四方机车车辆股份有限公司国家高速动车组总成工程技术研究中心 青岛 266111
  • 收稿日期:2019-02-25 修回日期:2019-07-30 出版日期:2020-02-20 发布日期:2020-04-23
  • 通讯作者: 张金煜(通信作者),男,1981年出生,博士,高级工程师。主要研究方向为车辆基础制动仿真、轮轨摩擦学、车辆动力学。E-mail:zjy_2924837@163.com
  • 作者简介:虞大联,男,1968年出生,硕士,教授级高级工程师。主要研究方向为车辆动力学。E-mail:ydl@cqsf.com;刘韶庆,男,1979年出生,博士,教授级高级工程师。主要研究方向为车辆结构强度和疲劳。E-mail:liushaoqing@cqsf.com;田爱琴,女,1973年出生,硕士,教授级高级工程师。主要研究方向为车体结构设计和列车空气动力学。E-mail:tianaiqin@cqsf.com
  • 基金资助:
    国家重点研发计划资助项目(2016YFB1200602)。

Simulation of Temperature Field of Ring-block Friction Based on Rotating Heat Flux Method and Uniformly Distributed Heat Flux Method

ZHANG Jinyu, YU Dalian, LIU Shaoqing, TIAN Aiqin   

  1. National Research Center of High-speed EMU Assembly Engineering Technology, CRRC Qingdao Sifang Co., Ltd., Qingdao 266111
  • Received:2019-02-25 Revised:2019-07-30 Online:2020-02-20 Published:2020-04-23

摘要: 针对目前摩擦热流加载方式对环块摩擦中圆环温度场影响规律的研究不全面的问题,深入分析旋转热流法和均布热流法这两种摩擦热流加载方式计算得到的圆环温度场之间的差异及内在联系。计算结果表明,环块摩擦中圆环的最高温度出现在环块摩擦面的中心线上(称为A0点),旋转热流法与均布热流法计算得到的A0点的温度值及其变化特性存在明显差异。在A0点下方,随着距离圆环摩擦面深度的增加,这种差异迅速减小,在2 mm处可近似认为相同。同时,随着环块摩擦时间的增加,A0点的温度不断增加,但旋转热流法计算得到的A0点的温度波动以及两种热流加载方式计算得到的A0点的温度差异迅速趋于稳定,据此提出一种圆环最高温度值的快速算法。此外,系统考察不同环块摩擦工况(圆环转动角速度、环块压力、圆环材料以及环块接触弧面圆心角)对圆环温度场的影响,揭示了A0点的温度波动在不同环块摩擦工况下的变化规律。研究成果为环块摩擦条件下圆环温度场计算中摩擦热流加载方式的选择提供了理论依据。

关键词: 环块摩擦, 温度场, 旋转热流法, 均布热流法

Abstract: Aiming at the insufficient research of the influence of the frictional heat flux loading method on the temperature field of the ring under the ring-block friction condition, the difference and intrinsic connection of the temperature field of the ring calculated by the two frictional heat flux loading methods (rotating heat flux method and uniformly distributed heat flux method) is investigated. The calculation results show that the highest temperature point (called A0 point) of the ring under the ring-block friction condition appears at the center line of the ring-block friction surface, and the calculated temperature and its change characteristics of the A0 point based on the two heat flux loading methods are quite different. Below point A0, with the increase of the distance below the ring-block friction surface, the differences between the temperature and its change characteristics calculated by the two frictional heat flux loading methods decrease rapidly, and for the point of 2 mm below the ring-block friction surface, the differences can be approximately ignored. At the same time, with the increase of the ring-block friction time, the temperature of point A0 increases continuously, but the temperature fluctuation of point A0 calculated by the rotating heat source method and the temperature difference of point A0 calculated by the two frictional heat flux loading methods tend to be stable rapidly. Based on this, a fast algorithm for calculating the maximum temperature value of the ring is proposed. In addition, the influence of different ring-block friction conditions (rotational angular velocity of the ring, ring-block pressure, ring material and central angle of the arc surface of the ring-block contact) on the ring temperature field is systematically investigated, and the variation law of the temperature fluctuation of point A0 under different ring-block friction conditions is revealed. A theoretical basis is provided for the selection of the frictional heat flux loading method in the calculation of the ring temperature field under the ring-block friction condition.

Key words: ring-block friction, temperature field, rotating heat source method, uniformly distributed heat source method

中图分类号: