机械工程学报 ›› 2020, Vol. 56 ›› Issue (1): 196-204.doi: 10.3901/JME.2020.01.196
顾恒1,2, 连芩1,2, 王慧超1,2, 李涤尘1,2, 靳国瑞3, 崔滨1,2
收稿日期:
2019-02-23
修回日期:
2019-07-16
出版日期:
2020-01-05
发布日期:
2020-03-09
通讯作者:
连芩(通信作者),女,1971年出生,博士,副教授,博士研究生导师。主要研究方向为增材制造与仿生制造。E-mail:lqiamt@mail.xjtu.edu.cn
作者简介:
顾恒,男,1995年出生。主要研究方向为生物3D打印。E-mail:825186692@qq.com
基金资助:
GU Heng1,2, LIAN Qin1,2, WANG Huichao1,2, LI Dichen1,2, JIN Guorui3, CUI Bin1,2
Received:
2019-02-23
Revised:
2019-07-16
Online:
2020-01-05
Published:
2020-03-09
摘要: 甲基丙烯酸酐明胶(Methacrylated gelatin,GelMA)是具有光敏官能团的改性明胶,有良好的生物相容性,广泛用于构建皮肤、神经等软组织支架。然而,光照交联单一成分的GelMA,其力学性能和结构维持性较差,难以通过挤出3D打印成形生物支架。提出一种适用于挤出式打印且力学性能增强的GelMA复合凝胶,其主要成分为GelMA、明胶和海藻酸钠。黏度测试试验筛选出适合挤出3D打印的复合材料配比,3D打印工艺试验研究和分析了打印气压、喷头移动速度、喷头高度、光照条件对挤出连续性和微丝直径的影响。当喷头内径为200 μm时,GelMA复合凝胶实现顺畅出丝(φ293~1 211 μm)的条件为气压在0.05~0.25 MPa,打印速度为1~15 mm/s,喷头高度为200~600 μm,光照强度为70~272.56 mW/cm2。拉伸试验表明光照交联后,复合凝胶较之同浓度GelMA(5%,w/v)的弹性模量提高近1倍,伸长率保持一致。细胞培养试验显示GelMA复合凝胶具有良好的生物相容性,包埋在其内部的人真皮成纤维细胞培养至第7天时存活率达85%。
中图分类号:
顾恒, 连芩, 王慧超, 李涤尘, 靳国瑞, 崔滨. GelMA复合凝胶的挤出式3D打印工艺及其性能研究[J]. 机械工程学报, 2020, 56(1): 196-204.
GU Heng, LIAN Qin, WANG Huichao, LI Dichen, JIN Guorui, CUI Bin. Extrusion 3D Printing Processes and Performance Evaluation of GelMA Composite Hydrogel[J]. Journal of Mechanical Engineering, 2020, 56(1): 196-204.
[1] LEE K Y,MOONEY D J. Hydrogels for tissue engineering[J]. Chemical Reviews,2001,101(7):1869-1880. [2] HE Y,YANG F F,ZHAO H M,et al. Research on the printability of hydrogels in 3D bioprinting[J]. Scientific Reports,2016,6:29977. [3] 王身国. 组织工程细胞支架及其相关技术研究[J]. 中国组织工程研究与临床康复,2001(16):16-17. WANG Shenguo. Tissue engineering cell scaffold and related technology research[J]. Chinese Journal of Tissue Engineering Research and Clinical Rehabilitation,2001(16):16-17. [4] PEREIRA R F,BARRIAS C C,GRANJA P L,et al. Advanced biofabrication strategies for skin regeneration and repair.[J]. Nanomedicine,2013,8(4):603-621. [5] NICHOL J W,KOSHY S,BAE H,et al. Cell-laden microengineered gelatin methacrylate hydrogels[J]. Biomaterials,2010,31(21):5536-5544. [6] YUE K,SANTIAGO T D,ALVAREZ M M,et al. Synthesis,properties,and biomedical applications of gelatin methacryloyl (GelMA) hydrogels[J]. Biomaterials,2015,73:254-271. [7] PEPELANOVA I,KRUPPA K,SCHEPER T,et al. Gelatin-methacryloyl (GelMA) hydrogels with defined degree of functionalization as a versatile toolkit for 3D cell culture and extrusion bioprinting[J]. Bioengineering,2018,5(3):55-69. [8] Van DEN B A I,BOGDANOV B,De ROOZE N,et al. Structural and rheological properties of methacrylamide modified gelatin hydrogels[J]. Biomacromolecules,2000,1(1):31-38. [9] KLOTZ B J,GAWLITTA D,ROSENBERG A J W P,et al. Gelatin-methacryloyl hydrogels:Towards biofabrication-based tissue repair[J]. Trends in Biotechnology,2016,34(5):394-407. [10] ZHU W,QU X,ZHU J,et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture[J]. Biomaterials,2017,124:106-115. [11] LUIZ E B,JULIANA C C,VIJAYAN M,et al. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels[J]. Biofabrication,2014,6(2):024105. [12] MONTEIRO N,THRIVIKRAMAN G,ATHIRASALA A,et al. Photopolymerization of cell-laden gelatin methacryloyl hydrogels using a dental curing light for regenerative dentistry[J]. Dental Materials Official Publication of the Academy of Dental Materials,2017,34(3):389-399. [13] LIN CH,SU JJ-M,LEE SY,et al. Stiffness modification of photopolymerizable gelatin-methcrylate hrdrogels influences endothelial differentiation of human mesenchymal stem cells[J]. Tissue Eng. Regen. Med.,2018,12(1):2099-2111. [14] BILLIET T,GEVAERT E,DE S T,et al. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability[J]. Biomaterials,2014,35(1):49-62. [15] YIN J,YAN M,WANG Y,et al. 3D bioprinting of low concentration cell-laden gelatin methacrylate (GelMA) bioinks with two-step crosslinking strategy[J]. ACS Appl. Mater. Interfaces,2018,10(8):6849-6857. [16] GUISEPPE M D,LAW N,WEBB B,et al. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting[J]. Journal of the Mechanical Behavior of Biomedical Materials,2017,79:150-157. [17] 金乐,熊卓,刘利,等. 基于活塞挤出的组织工程支架低温沉积制造工艺[J]. 清华大学学报,2009(5):652-655. JIN Le,XIONG Zhuo,LIU Li,et al. Low temperature deposition manufacturing process of tissue engineering scaffold based on piston extrusion[J]. Journal of Tsinghua University,2009(5):652-655. [18] COIMBRA P,FERNANDES D,FERREIRA P,et al. Solubility of Irgacure®;2959 photoinitiator in supercritical carbon dioxide:Experimental determination and correlation[J]. Journal of Supercritical Fluids,2008,45(3):272-281. [19] WANG Z,TIAN Z,MENARD F,et al. Comparative study of gelatin methacrylate hydrogels from different sources for biofabrication applications[J]. Biofabrication,2017,9(4):044101. [20] FIDKOWSKI C. Endothelialized microvasculature based on a biodegradable elastomer[J]. Tissue Eng,2005,11:302-309. [21] ANNABI N,NICHOL J W,ZHONG X,et al. Controlling the porosity and microarchitecture of hydrogels for tissue engineering[J]. Tissue Engineering Part B:Reviews,2010,16(4):371-383. [22] MANDAL B B,KUNDU S C. Cell proliferation and migration in silk fibroin 3D scaffolds[J]. Biomaterials,2009,30(15):2956-2965 |
[1] | 方续东, 邓武彬, 吴祖堂, 李进, 吴晨, 前田龙太郎, 田边, 赵立波, 林启敬, 张仲恺, 韩香广, 蒋庄德. 基于惯性传感器的呼吸测量技术综述[J]. 机械工程学报, 2024, 60(20): 1-23. |
[2] | 傅杨, 张跃, 毛颖, 唐小华, 陈祖高, 徐和武, 杨雨沛, 高斌, 田贵云. 基于Feature Boosting的管道电磁内检测多传感信号缺陷解析算法[J]. 机械工程学报, 2024, 60(20): 51-67. |
[3] | 吴洁, 沈以赴, 黄国强. 2024铝合金填丝TIG焊接头搅拌摩擦加工组织和性能研究[J]. 机械工程学报, 2024, 60(20): 153-161. |
[4] | 张志勇, 王宇翔, 黄彩霞, 吴悠, 杜荣华. 融合灰色预测和卡尔曼滤波的车辆侧向碰撞预警[J]. 机械工程学报, 2024, 60(20): 240-250. |
[5] | 廖贵文, 张毅, 魏凯, 刘小君, 王伟. 受限润滑界面液固二相流场结构与颗粒运动行为耦合特性分析[J]. 机械工程学报, 2024, 60(20): 351-360. |
[6] | 王旭, 姜兴宇, 杨国哲, 孙猛, 于沈弘, 毕凯航, 赵日铮, 刘伟军. 基于PSO-SSA的激光清洗装备人机界面布局优化研究[J]. 机械工程学报, 2024, 60(20): 372-387. |
[7] | 王德祥, 张宇, 江京亮, 刘新福, 刘国梁. 离子液基和棕榈油基纳米流体在镍基高温合金微量润滑磨削界面的摩擦学机理研究[J]. 机械工程学报, 2024, 60(19): 159-171. |
[8] | 李浦, 逯代兴. 协同仿真算法研究综述[J]. 机械工程学报, 2024, 60(19): 172-186. |
[9] | 王晓宇, 魏兆成, 王学勤, 王栋. 整体叶轮双列开槽五轴插铣加工的残留材料建模[J]. 机械工程学报, 2024, 60(19): 310-317. |
[10] | 王高见, 刘丽, 康丹丹, 叶延洪, 邓德安. Ni含量对高速列车转向架耐候钢焊缝金属微观组织、力学性能及腐蚀行为的影响[J]. 机械工程学报, 2024, 60(18): 163-172. |
[11] | 张明康, 师文庆, 徐梅珍, 王迪, 陈杰. 隐式曲面多孔结构压缩性能与流体压降性能研究[J]. 机械工程学报, 2024, 60(18): 394-406. |
[12] | 马伟佳, 朱小龙, 刘青瑶, 段星光, 李长胜. 人工智能在机器人辅助手术中的应用[J]. 机械工程学报, 2024, 60(17): 22-39. |
[13] | 袁小庆, 吴涛, 原勋, 王文东. 基于GSO-RF意图识别算法的全身助力外骨骼控制方法研究[J]. 机械工程学报, 2024, 60(17): 91-101. |
[14] | 张禹泽, 赵竞夫, 赵振伟, 康荣杰, 戴建生, 宋智斌. 面向多关节训练的并联柔索驱动下肢康复机器人设计与分析[J]. 机械工程学报, 2024, 60(17): 111-122. |
[15] | 梁旭, 张建勇, 李国涛, 苏婷婷, 何广平, 侯增广. 面向骨折复位手术的冗余并联机构:设计、建模与性能分析[J]. 机械工程学报, 2024, 60(17): 133-146. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||