[1] 于长友. 燃煤电厂钢带式排渣机干式除渣技术[J]. 中国电力, 2007, 40(1):56-59. YU Changyou. Dry bottom ash air-cooling conveyor handling system in coal-fired power plants[J]. Electric Power, 2007, 40(1):56-59. [2] 柳晓,刘振强,陈新. 火电厂锅炉干排渣技术的国产化及应用[J]. 中国电力, 2007, 40(6):20-23. LIU Xiao, LIU Zhenqiang, CHEN Xin. Domestic production and application of dry slag disposal technology in coal-fired power plant[J]. Electric Power, 2007, 40(6):20-23. [3] 高继录,冷杰,许华,等. 1000MW机组干式排渣系统对锅炉效率影响的试验研究[J]. 热能动力工程, 2012, 27(5):578-581, 595. GAO Jilu, LENG Jie, XU Hua, et al. Experimental study of the influence of the dry type deslagging system of a 1000 MW unit on the boiler efficiency[J]. Journal of Engineering for Thermal Energy and Power, 2012, 27(5):578-581, 595. [4] 范仁东. 从实测数据分析风冷干排渣系统对锅炉效率的影响[J]. 电力技术, 2010, 19(7):63-68. FAN Rendong. Analysis of influence of air cooled dry-type slag removal system on boiler efficiency using practically measured data[J]. Electric Power Technology, 2010, 19(7):63-68. [5] 王建勋,张艳辉,谢鹏飞,等. W型火焰锅炉配风方式对NOx排放和经济性影响的试验研究[J]. 热能动力工程, 2016, 31(1):103-106, 143-144. WANG Jianxun, ZHANG Yanhui, XIE Pengfei, et al. Experimental research of influence of air distribution mode for a W-flame boiler on NOx emission and boiler economy[J]. Journal of Engineering for Thermal Energy and Power, 2016, 31(1):103-106, 143-144. [6] 夏文静,衡丽君,何长征. 基于在线风量计算干式排渣系统漏风量的试验研究[J]. 节能技术, 2015, 33(192):380-385. XIA Wenjing,HENG Lijun, HE Changzheng. Experimental study on measuring the air leakage of dry-type slag removal system based on on-line air quantity[J]. Energy Conservation Technology, 2015, 33(192):380-385. [7] 许华,张华伦,王仕能,等. 干、湿式除渣系统对锅炉效率影响的研究[J]. 中国电力, 2013, 46(6):1-4. XU Hua, ZHANG Hualun, WANG Shineng, et al. Study on the impact of dry and wet bottom ash handling systems on boiler efficiency[J]. Electric Power, 2013, 46(6):1-4. [8] 王雪彩,孙树翁,李明,等. 600MW墙式对冲锅炉低氮燃烧技术改造的数值模拟[J]. 中国电机工程学报, 2015, 35(7):1689-1696. WANG Xuecai, SUN Shuweng, LI Ming, et al. Numerical simulation on low NOx combustion technological transformation of a 600 MW boiler with opposed wall swirling burners[J]. Proceedings of the CSEE, 2015, 35(7):1689-1696. [9] 李德波,沈跃良,徐齐胜,等. 运用燃烧数值模拟分析某台660MW超临界锅炉旋流燃烧器喷口烧损事故[J]. 机械工程学报, 2013, 49(16):121-130. LI Debo, SHEN Yueliang, XU Qisheng, et al. Numerical investigations on the key mechanisms of burnout of swirling combustors for 660 MW supercritical unit swirl coal-fired combustion boiler[J]. Journal of Mechanical Engineering, 2013, 49(16):121-130. [10] 李德波,宋景慧,徐齐胜,等. 660MW超超临界旋流对冲燃煤锅炉NOx分布数值模拟[J]. 动力工程学报, 2013, 33(12):913-919, 954. LI Debo, SONG Jinghui, XU Qisheng, et al. Numerical simulation on NOx distribution in a 660 MW ultra supercritical opposed firing boiler[J]. Journal of Chinese Society of Power Engineering, 2013, 49(16):121-130. [11] 李明,王雪彩,孙树翁,等. 燃尽风射流形式对墙式对冲煤粉锅炉低氮燃烧改造的影响[J]. 动力工程学报, 2015, 35(4):263-269. Li Ming, WANG Xuecai, SUN Shuweng, et al. Influence of overfire air jet form on low NOx retrofit effect of an opposed firing boiler[J]. Journal of Chinese Society of Power Engineering, 2015, 35(4):263-269. [12] 刘亚明,李方勇,徐齐胜,等. 600MW对冲燃烧锅炉NOx排放特性的数值模拟[J]. 动力工程学报, 2015, 35(5):341-347. LIU Yaming, LI Fangyong, XU Qisheng, et al. Numerical study on NOx emission characteristics of a 600 MW opposed firing boiler[J]. Journal of Chinese Society of Power Engineering, 2015, 35(5):341-347. [13] 李兵臣,宋景慧,沈跃良,等. 二次风旋流强度可调范围的数值模拟研究[J]. 动力工程学报, 2012, 32(12):916-921. LI Bingchen, SONG Jinghui, SHEN Yueliang, et al. Numerical study on adjustable range of secondary air swirl intensity[J]. Journal of Chinese Society of Power Engineering, 2012, 32(12):916-921. [14] 董康,周昊,杨玉,等. 二次风量对旋流燃烧器气固流动特性的影响[J]. 浙江大学学报, 2014, 48(12):2162-2171. DONG Kang, ZHOU Hao, YANG Yu, et al. Influence of mass flow rate of secondary air on gas/solid characteristics of a swirl burner[J]. Journal of Zhejiang University, 2014, 48(12):2162-2171. |