[1] 倪自强,王田苗,刘达. 医疗机器人技术发展综述[J]. 机械工程学报,2015,51(13):45-52. NI Ziqiang,WANG Tianmiao,LIU Da. Survey on medical robotics[J]. Journal of Mechanical Engineering,2015,51(13):45-52.
[2] 张雷雨,李剑锋,刘钧辉,等. 上肢康复外骨骼的设计与人机相容性分析[J]. 机械工程学报,2018,54(5):19-28. ZHANG Leiyu,LI Jianfeng,LIU Junhui,et al. Design and human-mashine compatibility analysis of co-exos for upper-limb rehabilitation[J]. Journal of Mechanical Engineering,2018,54(5):19-28.
[3] KAZEROONI H. The Berkeley lower extremity exoskeleton (BLEEX)[J]. Field and Service Robotics,2006,25(1):9-15.
[4] WANG Letian,WANG Shiqian. Actively controlled lateral gait assistance in a lower limb exoskeleton[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo,Nov. 3-7,2013,Tokyo,Japan. CA:IEEE,2013:965-970.
[5] WANG Shiqian,WANG Letian,MEIJNEKE C,et al. Design and control of the MINDWALKER exoskeleton[J]. IEEE Transactions on Neural System & Rehabilitation Engineering,2015,23(2):277-286.
[6] RIENER R,LÜNENBURGER L,JEZERNIK S,et al. Patient-cooperative strategies for robot-aided treadmill training:First experimental results[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2005,13(3):380-394.
[7] BANALA S K,KULPE A,AGRAWAL S K. A powered leg orthosis for gait rehabilitation of motor-impaired patients[C]//IEEE International Conference on Robotics and Automation,April 10-14,2007,Roma. CA:IEEE,2007:4140-4145.
[8] 文忠,钱晋武,沈林勇,等. 基于阻抗控制的步行康复训练机器人的轨迹自适应[J]. 机器人,2011,33(1):142-149. WEN Zhong,QIAN Jinwu,SHEN Linyong,et al. Trajectory adaptation for impedance control based walking rehabilitation training robot[J]. Robot,2011,33(1):142-149.
[9] 徐国政,陈雯,高翔,等. 基于阻抗辨识和混杂控制的机器人辅助阻抗训练方法[J]. 机械工程学报,2016,52(15):8-14. XU Guozheng,CHEN Wen,GAO Xiang,et al. Robot-aided resistance training method based on impedance identification and hybrid control[J]. Journal of Mechanical Engineering,2016,52(15):8-14.
[10] KASAOKA K,SANKAI Y. Predictive control estimation operator's intention for stepping-up motion by exoskeleton type power assist system HAL[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems,Oct. 29-Nov. 3,2001,Havaii. CA:IEEE,2001:1578-1583.
[11] KIGUCHI K,QUA Q. Muscle-model-oriented EMG-based control of an upper-limb power-assist exoskeleton with a neuro-fuzzy modifier[C]//Proc. of IEEE World Congress of Computational Intelligence,June 1-6,2008,Hong Kong. CA:IEEE,2008:1179-1184.
[12] LEE S,SANKAI Y. Minimizing the physical stress by virtual impedance of exoskeletonrobot in swinging motion with power assist system for lower limb[J]. Journal of the Japan Society of Mechanical Engineers,2005,71(707):274-282.
[13] RAJASEKARAN V. An adaptive control strategy for postural stability using a wearable robot[J]. Robotics and Autonomous Systems,2015,73:16-23.
[14] OH S. A generalized control framework of assistive controllers and its application to lower limb exoskeletons[J]. Robotics and Autonomous Systems,2015,73:68-77.
[15] MATSUOKA K. Sustained oscillations generated by mutually inhibiting neurons with adaptation[J]. Biological Cybernetics,1985,52:367-376.
[16] 张霞,胡晋嘉,罗天洪,等. 穿戴式步行辅助机器人的混合控制方法及其稳定性[J]. 机器人,2017,39(4):489-497. ZHANG Xia.,HU Jinjia,LUO Tianhong,et al. A hybrid control method for a wearable walking-assist robot and its stability[J]. Robot,2017,39(4):489-497.
[17] TOMIHIRO K,TADASHI M,TOHRU K,et al. Biomechanismlibrarypractical usage of surface electromyogram[M]. 1st ed. Japan:Society of Biomechanisms,2006.
[18] 张霞,罗天洪,陈仁祥,等. 步行中髋关节运动辅助的人机交流协调控制方法[J]. 机械工程学报,2017,53(9):38-45. ZHANG Xia,LUO Tianhong,CHEN Renxiang,et al. Human-robot interaction-based coordination control for hip joints motion assist in walking[J]. Journal of Mechanical Engineering,2017,53(9):38-45. |