[1] 张宪民,胡凯,王念峰,等. 基于并行策略的多材料柔顺机构多目标拓扑优化[J]. 机械工程学报,2016,52(19):1-8. ZHANG Xianmin,HU Kai,WANG Nianfeng,et al. Multi-objective topology optimization of multiple material compliant mechanisms based on parallel strategy[J]. Journal of Mechanical Engineering,2016,52(19):1-8.
[2] 于靖军,郝广波,陈贵敏,等. 柔性机构及其应用研究进展[J]. 机械工程学报,2015,51(13):53-68. YU Jingjun,HAO Guangbo,CHEN Guimin,et al. State of-art of compliant mechanisms and their applications[J]. Journal of Mechanical Engineering,2015,51(13):53-68.
[3] WANG Liping,JIANG Yao,LI Tiemin. Analytical compliance modeling of serial flexure-based compliant mechanism under arbitrary applied load[J]. Chinese Journal of Mechanical Engineering,2017,30(4):1-12.
[4] 李守忠. 两种新颖的柔性机构自由度分析方法[J]. 机械工程学报,2016,52(1):41-46. LI Shouzhong. Two kinds of novel methods for analyzing the degree of freedom of flexure mechanisms[J]. Journal of Mechanical Engineering,2016,52(1):41-46.
[5] LIU Shanzeng,DAI Jiansheng,LI Aimin,et al. Analysis of frequency characteristics and sensitivity of compliant mechanisms[J]. Chinese Journal of Mechanical Engineering,2016,29(4):1-14.
[6] DEEPAK S R,DINESH M,SAHU D K,et al. A comparative study of the formulations and benchmark problems for the topology optimization of compliant mechanisms[J]. Journal of Mechanisms and Robotics,2008,1(1):212-240.
[7] CHEN G,WANG J,LIU X. Generalized equations for estimating stress concentration factors of various notch flexure hinges[J]. Journal of Mechanical Design,2014,136(3):252-261.
[8] POULSEN T A. A new scheme for imposing a minimum length scale in topology optimization[J]. International Journal for Numerical Methods in Engineering,2003,57(6):741-760.
[9] YIN L,ANANTHASURESH G K. Design of distributed compliant mechanisms[J]. Mechanics Based Design of Structures and Machines:An International Journal,2003,31(2):151-179.
[10] ZHOU H. Topology optimization of compliant mechanisms using hybrid discretization model[J]. Journal of Mechanical Design,2010,132(11):111003(1-8).
[11] ZHOU H,MANDALA A R. Topology optimization of compliant mechanisms using the improved quadrilateral discretization model[J]. Journal of Mechanical and Robotics,2012,4(2):021007(1-9).
[12] YOON G H,KIM Y Y,BENDSØE M P,et al. Hinge-free topology optimization with embedded translation-invariant differentiable wavelet shrinkage[J]. Structural and Multidisciplinary Optimization,2004,27(3):139-150.
[13] LUO J Z,LUO Z,CHEN S K,et al. A new level set method for systematic design of hinge-free compliant mechanisms[J]. Computational Methods in Applied Mechanics and Engineering,2008,198(2):318-331
[14] CHEN S K,WANG M Y,LIU A Q. Shape feature control in structural topology optimization[J]. Computer-Aided Design,2008,40(9):951-962.
[15] WANG M Y,CHEN S K. Compliant mechanism optimization:analysis and design with intrinsic characteristic stiffness[J]. Mechanics Based Design of Structures and Machines,2009,37(2):183-200.
[16] ZHU B L,ZHANG X M,WANG N F. Topology optimization of hinge-free compliant mechanisms with multiple outputs using level set method[J]. Structural and Multidisciplinary Optimization,2013,47(5):659-672.
[17] LEON D M D,ALEXANDERSEN J,FONSECA J S O,et al. Stress-constrained topology optimization for compliant mechanism design[J]. Structural and Multidisciplinary Optimization,2015,52(5):1-15.
[18] LOPES C G,NOVOTNY A A. Topology design of compliant mechanisms with stress constraints based on the topological derivative concept[J]. Structural and Multidisciplinary Optimization,2016,54(4):1-10.
[19] XUE Xiaoguang,LI Guoxi,XIONG Jingzhong,et al. Power flow response based dynamic topology optimization of bi-material plate structures[J]. Chinese Journal of Mechanical Engineering,2013,26(3):620-628.
[20] 荣见华,葛森,邓果,等. 基于位移和应力灵敏度的结构拓扑优化设计[J]. 力学学报,2009,41(4):518-529. RONG Jianhua,GE Sen,DENG Guo,et al. Structural topology optimization based on displacement and stress sensitivity analyses[J]. Chinese Journal of Theoretical and Applied Mechanics,2009,41(4):518-529.
[21] 李志强,张运章,宋艳丽. 应力和位移约束下连续结构的有效拓扑优化方法[J]. 应用力学学报,2013,30(1):70-75. LI Zhiqiang,ZHANG Yunzhang,SONG Yanli. An efficient structural topological optimization method for continuum structures with stress and displacement constraints[J]. Chinese Journal of Applied Mechanics,2013,30(1):70-75.
[22] 易桂莲,隋允康. 基于应力约束全局化策略的板壳结构强度拓扑优化[J]. 工程力学,2015,32(8):211-216. YI Guilian,SUI Yunkang. Topology optimization for plate and shell structures based on stress constraint globalization[J]. Engineering Mechanics,2015,32(8):211-216.
[23] LUO Y,KANG Z. Topology optimization of continuum structures with Drucker-Prager yield stress constraints[J]. Computers and Structures,2012,90-91(1):65-75.
[24] LE C,NORATO J,BRUNS T,et al. Stress-based topology optimization for continua[J]. Structural and Multidisciplinary Optimization,2010,41(4):605-620.
[25] OEST J,LUND E. Topology optimization with finite-life fatigue constraints[J]. Structural and Multidisciplinary Optimization,2017,56(5):1-15.
[26] ANDREASSEN E,CLAUSEN A,SCHEVENELS M,et al. Efficient topology optimization in MATLAB using 88 lines of code[J]. Structural and Multidisciplinary Optimization,2011,43(1):1-16.
[27] NISHIWAKI S,FRECKER M I,MIN S,et al. Topology optimization of compliant mechanisms using the homogenization method[J]. International Journal for Numerical Methods in Engineering,1998,42(3):535-559.
[28] SVANBERG K. The method of moving asymptotes-a new method for structural optimization[J]. International Journal for Numerical Methods in Engineering,1987,24(2):359-373.
[29] SVANBERG K. A class of globally convergent optimization methods based on conservative convex separable approximations[J]. SIAM Journal on Optimization,2002,12(2):555-573.
[30] LUO Z,TONG L,WANG M Y,et al. Shape and topology optimization of compliant mechanisms using a parameterization level set method[J]. Journal of Computational Physics,2007,227(1):680-705. |