• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2018, Vol. 54 ›› Issue (14): 152-158.doi: 10.3901/JME.2018.14.152

• 运载工程 • 上一篇    下一篇

基于内凹型接触轮的钢轨砂带打磨静态接触行为与仿真研究

樊文刚1,2, 程继发1,2, 吴月峰1,2, 李建勇1,2, 宋晓阳3   

  1. 1. 北京交通大学机械与电子控制工程学院 北京 100044;
    2. 北京交通大学载运工具先进制造与测控技术教育部重点实验室 北京 100044;
    3. 中国铁道科学研究院铁道建筑研究所 北京 100081
  • 收稿日期:2017-07-31 修回日期:2018-01-05 出版日期:2018-07-20 发布日期:2018-07-20
  • 通讯作者: 樊文刚(通信作者),男,1985年出生,博士,副教授。主要研究方向为钢轨打磨技术与装备、数字化制造技术与装备。E-mail:wgfan@bjtu.edu.cn
  • 作者简介:李建勇,男,1962年出生,博士、教授、博导。主要研究方向为钢轨打磨技术与装备、数字化制造技术与装备等。E-mail:jyli@bjtu.edu.cn
  • 基金资助:
    中央高校基本科研业务费(2017JBM043)和国家自然科学基金(51505025)资助项目。

Research on Static Contact Behavior and Simulation for Rail Grinding by Abrasive Belt Based on Concave Type Contact Wheel

FAN Wengang1,2, CHENG Jifa1,2, WU Yuefeng1,2, LI Jianyong1,2, SONG Xiaoyang3   

  1. 1. School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044;
    2. MOE Key Laboratory of Vehicle Advanced Manufacturing, Measuring and Control Technology, Beijing Jiaotong University, Beijing 100044;
    3. Railway Engineering Research Institute, China Academy of Railway Sciences, Beijing 100081
  • Received:2017-07-31 Revised:2018-01-05 Online:2018-07-20 Published:2018-07-20

摘要: 为揭示基于内凹型接触轮的钢轨砂带打磨静态接触行为,分析内凹型接触轮与钢轨接触几何关系,建立内凹型接触轮与钢轨宏观静态接触理论模型。采用Hertz接触理论对钢轨横截面和纵截面两方向微元积分,得到接触区域边界曲线函数和应力分布函数,获得打磨压力、接触轮直径等参量对接触区域形态和应力分布的影响规律。理论计算和有限元仿真结果表明,内凹型接触轮与钢轨接触区域是由四条曲线围成的封闭图形,与传统椭圆形接触区域差异显著;最大接触应力随打磨压力的增大而增大,随接触轮直径的增大而减小;仿真数据和理论计算数据基本吻合,验证理论模型的正确性和有效性。

关键词: 仿真, 钢轨打磨, 接触, 砂带, 应力

Abstract: To reveal the static contact behavior for rail grinding by abrasive belt based on concave type contact wheel, the relationship of contact geometry between the concave type contact wheel and the rail surface is analyzed and then the macro static contact theory model is built. Through the integral method for the two directions of rail cross section and longitudinal section using Hertz contact theory, the boundary curve function and the stress distribution function of contact area are obtained, by which the influence of grinding pressure and diameter of contact wheel on contact area contour and stress distribution is gotten. Results by theoretical calculation and finite element simulation show that the contact area contour appears a closed graph surrounded by four curves, which is significantly different from the traditional elliptical contact; the maximum contact stress increases with the grinding pressure increasing, and decreases with the diameter of contact wheel increasing; the simulation data and the theoretical calculation data agree well, which verifies correctness and validity of the theory model.

Key words: abrasive belt, contact, rail grinding, simulation, stress

中图分类号: