• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2017, Vol. 53 ›› Issue (22): 87-94.doi: 10.3901/JME.2017.22.087

• 材料科学与工程 • 上一篇    下一篇

保护气体对高氮钢焊接熔滴过渡模式和气孔缺陷的影响研究

崔博1,2,3,4, 张宏1,3,4, 刘佳1,3,4, 刘凤德1,3,4, 张福隆1,3,4   

  1. 1. 长春理工大学机电工程学院 长春 130022;
    2. 北华大学汽车与建筑工程学院 吉林 132013;
    3. 长春理工大学激光加工吉林省高等学校工程研究中心 长春 130022;
    4. 长春理工大学国家国际科技合作基地(光学) 长春 130022
  • 收稿日期:2017-03-13 修回日期:2017-09-12 出版日期:2017-11-20 发布日期:2017-11-20
  • 通讯作者: 张宏(通信作者),男,1968年出生,博士,教授,博士研究生导师。主要研究方向为激光加工技术。E-mail:h_zhang@cust.edu.cn
  • 作者简介:崔博,男,1988年出生,博士研究生。主要研究方向为激光加工技术。E-mail:db0425@126.com;刘佳,男,1983年出生,博士,副教授,硕士研究生导师。主要研究方向为激光加工技术。E-mail:liujia@cust.edu.cn

Study on the Impact of the Shielding Gas on the Droplet Transfer Mode and Blowhole Defect of High Nitrogen Steel Welding

CUI Bo1,2,3,4, ZHANG Hong1,3,4, LIU Jia1,3,4, LIU Fengde1,3,4, ZHANG Fulong1,3,4   

  1. 1. College of Mechanical and Electric Engineering, Changchun University of Science and Technology, Changchun 130022;
    2. College of Automible and Civil Engineering, Beihua University, Jilin 132013;
    3. Engineering Research Center of Laser Processing for Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022;
    4. National Base of International Science and Technology Cooperation in Optics, Changchun University of Science and Technology, Changchun 130022
  • Received:2017-03-13 Revised:2017-09-12 Online:2017-11-20 Published:2017-11-20

摘要: 采用激光-电弧复合热源对8 mm厚的高氮钢板进行焊接试验,研究不同保护气体组成对焊缝形貌、熔滴过渡特征和气孔缺陷的影响。结果表明,采用纯氩做保护气体时,熔滴过渡模式以射流过渡为主,并伴有少量排斥过渡;保护气体成分为Ar+N2混合气体时,熔滴过渡模式为短路过渡;保护气体成分为Ar+N2+O2混合气体时,熔滴过渡模式为射流过渡。保护气体的组成对焊缝气孔缺陷也存在一定的影响,保护气体为纯氩时,焊缝气孔率最大,其值为2.52%;保护气体为90% Ar+10% N2时,气孔率最低,仅为0.16%;Ar+N2中添加1%的O2后,气孔率略有升高,但与纯氩时相比,气孔率仍下降明显。采用Ar+N2+O2三元混合气作为保护气体时,能够有效抑制焊缝内气孔数量,同时可以改善熔滴过渡模式,提高焊接过程稳定性。

关键词: 保护气体, 复合焊接, 高氮钢, 焊接气孔, 熔滴过渡

Abstract: High-nitrogen steel plates with a thickness of 8 mm are welded with a laser-arc composite heat source for experiment to study the impact of different shielding gas compositions on the welding joint profile, droplet transfer features and blowhole defect. The results show that when the pure argon is used as the shielding gas, the droplet transfer mode is mainly shown as spray transfer, accompanied by a small amount of repulsion transfer. When the shielding gas is mixed by Ar+N2, the droplet transfer mode is short circuiting transfer; when the shielding gas is mixed by Ar+N2+O2, the droplet transfer mode is spray transfer. The shielding gas composition has some impact on the blowhole defect of the welding joint. When the shielding gas is pure argon, the blowhole defect rate of the welding joint is at its maximum and its value is 2.52%. When the shielding gas is 90% Ar+10% N2, the blowhole defect rate is the lowest, only 0.16%; when 1% of the O2 is added to the mixture of Ar+N2, the blowhole defect rate slightly rises, but compared with that of pure argon, the blowhole defect rate still drops significantly. When the ternary mixture of Ar+N2+O2 is used as the shielding gas, the number of blowholes in the welding joint can be effectively contained, and the droplet transfer mode can be improved to better the stability of the welding process.

Key words: droplet transfer, high nitrogen steels, hybrid welding, shielding gas, welding porosity

中图分类号: