• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2017, Vol. 53 ›› Issue (10): 136-144.doi: 10.3901/JME.2017.10.136

• 运载工程 • 上一篇    下一篇

基于统计能量分析的高速列车车内气动噪声研究

刘加利1, 于梦阁2, 田爱琴1, 杜健1, 张继业3   

  1. 1. 中车青岛四方机车车辆股份有限公司技术中心 青岛 266111;
    2. 青岛大学机电工程学院 青岛 266071;
    3. 西南交通大学牵引动力国家重点实验室 成都 610031
  • 出版日期:2017-05-15 发布日期:2017-05-15
  • 作者简介:

    刘加利,男,1985年出生,博士,高级工程师。主要研究方向为高速列车气动噪声。

    E-mail:liujiali@cqsf.com

    于梦阁(通信作者),女,1985年出生,博士,副教授。主要研究方向为高速列车流固耦合动力学,机械结构可靠性及多目标优化设计。

    E-mail:yumengge0627@163.com

  • 基金资助:
    * 中国铁路总公司科技研究开发计划(2015J009-D)、山东省自然科学基金(ZR2014EEP002)和国家重点研发计划(2016YBF1200504-F)资助项目; 20160725收到初稿,20170320收到修改稿;

Study on the Interior Aerodynamic Noise of the High-speed Train Based on the Statistical Energy Analysis

LIU Jiali1, YU Mengge2, TIAN Aiqin1, DU Jian1, ZHANG Jiye3   

  1. 1. R & T Center, CRRC Qingdao Sifang Co., Ltd., Qingdao 266111;
    2. College of Mechanical and Electronic Engineering, Qingdao University, Qingdao 266071;
    3. Traction Power State Key laboratory, Southwest Jiaotong University, Chengdu 610031
  • Online:2017-05-15 Published:2017-05-15

摘要:

为研究高速列车车内气动噪声特性,利用统计能量分析方法构建包括422个车体结构子系统及170个车内声腔子系统的高速列车车内气动噪声计算模型。通过理论公式计算各个子系统的模态密度和内损耗因子,以及不同子系统之间的耦合损耗因子,通过大涡模拟方法计算各个车体结构子系统的湍流边界层输入激励,进而计算分析高速列车车内气动噪声。计算结果表明:各个车体结构子系统的脉动压力谱随着频率的增加呈现减小的趋势。随着车速的增加,各个频率下的高速列车车内气动噪声均增大。高速列车车内气动噪声的线性计权声压级具有明显的低频特性,而A计权声压级的显著频带范围较宽。司机室声腔A计权声压级的显著频带范围是100~2 000 Hz,乘客室声腔A计权声压级的显著频带范围是50~2 000 Hz。高速列车车内气动噪声的线性计权声压级和A计权声压级均与车速的对数近似呈线性关系。

关键词: 大涡模拟, 脉动压力, 气动噪声, 统计能量分析, 高速列车

Abstract:

In order to study characteristics of the interior aerodynamic noise of the high-speed train, the computational model of the interior aerodynamic noise of the high-speed train is set up based on the statistical energy analysis method, which includes 422 car-body structural subsystems and 170 interior acoustic cavity subsystems. The modal density and internal loss factor for each subsystem, and the coupled loss factor for different subsystems, are computed based on the theoretical formula. The turbulent boundary layer inputs on the carbody subsystems are obtained using the large eddy simulation, and then the interior aerodynamic noise of the high-speed train is computed and analyzed. Computational results show that the fluctuating pressure spectrums on the carbody subsystems decrease with the increasing of the frequency. The sound pressure level of the interior aerodynamic noise for each frequency increases with the increasing of the train speed. The sound pressure level of the interior aerodynamic noise of the high-speed train has low frequency characteristics for the liner-weighted sound pressure level and has broadband characteristics for the A-weighted sound pressure level. For the A-weighted sound pressure level, the sound energy is mainly distributed between 100-2 000 Hz for the drive’s cab cavity and 50-2 000 Hz for the passenger compartment cavity. The linear-weighted and A-weighted sound pressure level of the interior aerodynamic noise of the high-speed train has a linear relationship with the logarithm of the train speed.

Key words: aerodynamic noise, fluctuating pressure, large eddy simulation, statistical energy analysis, high-speed train