• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2017, Vol. 53 ›› Issue (6): 94-101.doi: 10.3901/JME.2017.06.094

• 运载工程 • 上一篇    下一篇

高速列车受电弓气动噪声降噪*

张亚东1, 韩璐2, 李明2, 张继业1   

  1. 1. 西南交通大学牵引动力国家重点实验室 成都 610031;
    2. 中车唐山机车车辆有限公司产品技术研究中心 唐山 063000
  • 出版日期:2017-03-20 发布日期:2017-03-20
  • 作者简介:张亚东,男,1987年出生,博士研究生。主要研究方向为高速列车受电弓气动行为及气动噪声。E-mail:aliyzyd@163.comE-mail:sjc-liming@tangche.com张继业(通信作者),男,1965年出生,博士,教授,博士研究生导师。主要研究方向为高速列车流固耦合动力学与复杂系统稳定与控制。E-mail:jyzhang@home.swjtu.edu.cn
  • 基金资助:
    *国家科技支撑计划(2013BAG24B02)、国家重点研发计划课题(2016YFB1200403)和高速铁路基础研究联合基金(U1234208)资助项目; 20160323收到初稿,20161129收到修改稿;

Reduction of Aerodynamic Noise of High-speed Train Pantograph

ZHANG Yadong1, HAN Lu2, LI Ming2, ZHANG Jiye1   

  1. 1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031;
    2. R&D Center, Tangshan Railway Vehicle Co., Ltd., Tangshan 063000
  • Online:2017-03-20 Published:2017-03-20

摘要:

基于Lighthill声学理论,采用宽频带噪声源模型、大涡模拟和Ffowcs Williams-Hawkings声学模型对某型高速列车气动噪声进行数值模拟,建立3节编组高速列车整车气动噪声模型,分析该型高速列车的主要气动噪声声源及远场气动噪声特性,并以受电弓为主要气动噪声源进行降噪研究,主要考虑受电弓的开/闭口方式、不同受电弓导流罩结构、受电弓导流罩不同安装位置等主要噪声源部位处的低噪声设计。基于以上分析,得到低噪声的高速列车受电弓结构,较原始高速列车其最大声压级减小3.1 dBA,达到低噪声设计目标。且通过风洞试验验证了所提出的高速列车气动噪声计算方法的有效性和正确性。

关键词: 大涡模拟, 降噪设计, 气动噪声, 受电弓, 受电弓导流罩, 高速列车

Abstract:

Based on Lighthill acoustic theory in this paper, broadband noise source model, large eddy simulation and Ffowcs Williams-Hawkings equation are used to perform numerical simulations in aerodynamic noise of a high-speed train. The aerodynamic noise model of full scale high-speed train is established. The main aerodynamic noise source and the characteristics of far-field aerodynamic noise of a high-speed train are analyzed, as well the analysis methods of noise reduction based on the main noise source is presented. The low-noise design and improvement of high-speed train primarily based on the main noise source such as the knuckle-downstream direction/the knuckle-upstream direction, the different pantograph fairings and the different installations of pantograph fairings. Based on the above analysis, the low-noise structure of full scale high-speed train pantograph which max sound pressure level is 3.1 dBA lower than the original trains is obtained. Thus the designed goal of noise reduction has been achieved. In addition, the accuracy and effectiveness of calculating method of aerodynamic noise has been proved by wind tunnel test.

Key words: aerodynamic noise, large eddy simulation, low-noise design, pantograph, pantograph fairing, high-speed train