• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2016, Vol. 52 ›› Issue (22): 70-77.doi: 10.3901/JME.2016.22.070

• 材料科学与工程 • 上一篇    下一篇

氧化铈对高强钢复合焊接焊缝组织与韧性的影响*

王力锋1,2, 刘凤德1, 张宏1, 刘双宇1, 刘薇娜1, 刘松林1, 邵奇深1   

  1. 1. 长春理工大学机电工程学院 长春 130022;
    2. 长春奥普光电技术股份有限公司 长春 130033
  • 出版日期:2016-11-15 发布日期:2016-11-15
  • 作者简介:王力锋,男,1968年出生,博士研究生,研究员。主要研究方向为激光-电弧复合焊接技术。E-mail:wanglf@ciomp.ac.cn刘凤德(通信作者),男,1978年出生,博士,讲师,硕士研究生导师。主要研究方向为激光加工技术。E-mail:lfd@cust.edu.cn
  • 基金资助:
    * 国家青年科学基金资助项目(51305044); 20151220收到初稿,20160818收到修改稿;

Effect of Cerium Oxide on Microstructure and Toughness of the Hybrid Welding Joints of High Strength Steels

WANG Lifeng1,2, LIU Fengde1, ZHANG Hong1, LIU Shuangyu1, LIU Weina1, LIU Songlin1, SHAO  Qishen1   

  1. 1. College of Mechanical and Electric Engineering, Changchun University of Science and Technology, Changchun 130022;
    2. Changchun UP Optotech Co., Ltd., Changchun 130033
     
  • Online:2016-11-15 Published:2016-11-15

摘要:

稀土是理想的变质和微合金化元素,采用Nd:YAG激光-MAG电弧复合焊接方法,以预置方式向高强钢复合焊接熔池过渡氧化铈,研究焊缝组织与低温(-40 ℃)冲击性能。结果表明:适量氧化铈能控制晶粒尺寸并细化焊缝组织,当添加量为0.3%时,焊缝晶粒得到明显细化,随着添加量的增加,晶粒尺寸和枝晶间距均增大,但氧化铈并不能改变焊缝组织相成分,仍以板条马氏体组织为主。氧化铈能够净化焊缝组织,变质夹杂物并起到异质形核作用,夹杂物主要由硅、铝、铁的氧化物或碳化物及少量含铈类氧化物和氧硫化物组成。低温冲击测试发现,焊缝及其热影响区冲击吸收能量随氧化铈添加量的增加而呈先增后降的变化趋势,当添加量为0.3%时,焊缝冲击吸收能量达到最大,而添加量为0.5%时,热影响区冲击吸收能量达到最大值,其断口处韧窝均多而深,以韧性断裂为主。

关键词: 冲击韧度, 夹杂物, 微观组织, 氧化铈, 激光-电弧复合焊

Abstract: As the characteristics of high strength, light quality and easy formability, metal-polymer composite parts are receiving increasing attention in the field of aerospace, automotive manufacturing and communications. The molding process of metal-polymer composites with injection method and microstructures is introduced, and a numerical model for the polymer melt filling into the microstructures of metal surface is established. The flow front of the melt on the metal surface is tracked by using level set method, the influences of the microstructure size, the injection speed and the metal surface temperature on the filling ability of the melt into the microstructures are studied as well. The experimental apparatus for the metal-polymer composites molding technology is constructed, and microstructures of the metal surface are obtained by using sand blasting method. Accordingly, the specimens of the metal-polymer are molded successfully. Through tensile shearing test, the simulation results are verified. Results obtained in this paper have an important inspiration and guidance to optimize the molding parameter sand improve the part quality of the new metal-polymer molding technology.

Key words: injection molding, microscopic structure, numerical simulation, metal-polymer composite