• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2015, Vol. 51 ›› Issue (7): 91-98.doi: 10.3901/JME.2015.07.091

• 机械动力学 • 上一篇    下一篇

扫码分享

基于主观贝叶斯推理的多传感器分布式故障检测融合方法

徐小力1, 2   刘秀丽1   蒋章雷1   任彬3     

  1. 1.北京理工大学机械与车辆学院;2.北京信息科技大学现代测控教育部重点实验室;3.石家庄铁道大学机械工程学院
  • 出版日期:2015-04-05 发布日期:2015-04-05
  • 基金资助:
    国家自然科学基金资助项目(51275052)

Multi-sensor Distributed Fault Detection Method Based on Subjective Bayesian Reasoning

XU Xiaoli1, 2,   LIU Xiul1, JIANG Zhanglei1,   RENBin3,     

  1. 1.School of Mechanical and Vehicle Engineering, Beijing Institute of Technology;
    2.Key Laboratory of Modern Measurement & Control Technology of Ministry of Education, Beijing Information Science and Technology University;
    3.chool of Mechanical Engineering, Shijiazhuang Railway University
  • Online:2015-04-05 Published:2015-04-05

摘要: 针对复杂数控加工中心故障预测中各传感器检测信息呈现不确定性的问题,提出基于不确定性推理的多传感器分布式检测融合算法。该算法通过利用主观贝叶斯推理,获取局部检测装置的判决规则,并选取合适的局部判决规则送到融合规则中心,将来自不同传感器的观测数据进行综合分析,最后产生全局判决。以复杂立式加工中心为对象建立测试平台,利用多传感器样本获取方法进行机床不同运行状态及运行环境下的故障样本获取试验。试验表明在含有大量不确定性信息的故障诊断系统中,基于主观贝叶斯推理的分布式检测融合算法具有故障信息识别率高、诊断速度快的优点,其诊断错误率明显低于单个传感器的诊断错误率,且诊断错误率要低于串行分布式检测融算法。

关键词: 参数选择, 故障诊断, 神经网络, 萤火虫算法

Abstract: Each sensor detects information presents problems under uncertainty in computerized numerical control(CNC)machining center fault prediction. Aiming at this problem, multi-sensor distributed fault detection method based on uncertainty reasoning is proposed. The algorithm by using subjective Bayesian reasoning, acquire the local detection device of decision rules, and select the local decision rules suitable to the fusion center, finally a global decision is produced. The complex vertical machining center as an example, the distributed multiple sensor fault detection platform is built. Fault sample is acquired using multi-sensor sample on different machine running state and running environment. Experiments show that in the fault diagnosis system contains a lot of information uncertainty, distributed detection fusion algorithm based on subjective Bayesian inference has the advantages of high recognition rate of fault information, diagnosis speed. Diagnosis error rate of multi-sensor distributed detection fusion algorithm is significantly lower than that of single sensor and the serial structure.

Key words: CNC machine center, fault detection, multi-sensor information fusion, subjective Bayesian reasoning

中图分类号: