CAI Yanping, WANG Xinjun, JIANG Ke, HAN Deshuai, ZHAO Qinfeng. Multi-step Prediction of Online Lithium Battery Remaining Useful Life Based on GRNN-GSA-ELM[J]. Journal of Mechanical Engineering, 2024, 60(24): 296-308.
[1] 陈龙,池上森,董源,等. 全固态锂电池关键材料—固态电解质研究进展[J]. 硅酸盐学报,2018,46(1):21-34. CHEN Long,CHI Shangsen,DONG Yuan,et al. Research progress of key materials for all-solid-state lithium batteries[J]. Journal of the Chinese Ceramic Society,2018,46(1):21-34. [2] 李维聪,穆浩,沈恒龙,等. 固态锂电池在载运工具中的应用前景分析[J]. 电气工程学报,2022,17(4):88-102. LI Weicong,MU Hao,SHEN Henglong,et al. Application prospect analysis of solid-state lithium battery in vehicle[J]. Journal of Electrical Engineering,2022,17(4):88-102. [3] 杨淞元,田勇,田劲东. 基于iCEEMDAN和迁移学习的锂离子电池SOH估计[J]. 电气工程学报,2022,17(4):2-10. YANG Songyuan,TIAN Yong,TIAN Jindong. State of health estimation of lithium-ion batteries based on iCEEMDAN and transfer learning[J]. Journal of Electrical Engineering,2022,17(4):2-10. [4] 鲁南,欧阳权,黄俍卉,等. 基于注意力机制和多任务LSTM的锂电池容量预测方法[J]. 电气工程学报,2022,17(4):41-50. LU Nan,OUYANG Quan,HUANG Lianghui,et al. Capacity prediction of lithium-ion batteries based on multi-task LSTM with attention mechanism[J]. Journal of Electrical Engineering,2022,17(4):41-50. [5] 方德宇,楚潇,刘涛,等. 基于数据-模型驱动的锂离子电池健康状态估计[J]. 电气工程学报,2022,17(4):20-31. FANG Deyu,CHU Xiao,LIU Tao,et al. Research on health assessment method of lithium-ion battery based on data-model hybrid drive[J]. Journal of Electrical Electrical Engineering,2022,17(4):20-31. [6] 郑志坤,赵光金,金阳,等. 基于库仑效率的退役锂离子动力电池储能梯次利用筛选[J]. 电工技术学报,2019,34(增刊1):388-395. ZHENG Zhikun,ZHAO Guangjin,JIN Yang,et al. The reutilization screening of retired electric vehicle Lithium-ion battery based on coulombic efficiency[J]. Transactions of China Electrotechnical Society,2019,34(Suppl.1):388-395. [7] 全睿,全书海,黄亮,等. 基于模糊故障树的燃料电池发动机氢安全[J]. 上海交通大学学报,2010,44(7):951-956. QUAN Rui,QUAN Shuhai,HUANG Liang,et al. Study on hydrogen safety of fuel cell engine based on fuzzy fault tree[J]. Journal of Shanghai Jiaotong University,2010,44(7):951-956. [8] 郭永芳,黄凯,李志刚. 基于短时搁置端电压压降的快速锂离子电池健康状态预测[J]. 电工技术学报,2019,34(19):3968-3978. GUO Yongfang,HUANG Kai,LI Zhigang. Fast state of health prediction of lithium-ion battery based on terminal voltage drop during rest for short time[J]. Transactions of China Electrotechnical Society,2019,34(19):3968-3978. [9] 谢长君,费亚龙,曾春年,等. 基于无迹粒子滤波的车载锂离子电池状态估计[J]. 电工技术学报,2018,33(17):3958-3964. XIE Changjun,FEI Yalong,ZENG Chunnian,et al. Sta-te-of-charge estimation of lithium-ion battery using unscented particle filter in vehicle[J]. Transactions of China Electrotechnical Society,2018,33(17): 3958-3964. [10] 易灵芝,张宗光,范朝冬,等. 基于EEMD-GSGRU的锂电池寿命预测[J]. 储能科学与技术,2020,9(5):1566-1573. YI Lingzhi,ZHANG Zongguang,FAN Chaodong,et al. Life prediction of lithium battery based on EEMD- GSGRU[J]. Energy Storage Science and Technology,2020,9(5):1566-1573. [11] 王竹晴,郭阳明,徐聪. 基于SAE-VMD的锂离子电池健康因子提取方法[J]. 西北工业大学学报,2020,38(4):814-821. WANG Zhuqing,GUO Yangming,XU Cong. An HI extraction framework for lithium-Ion battery prognostics based on SAE-VMD[J]. Journal of Northwestern Polytechnical University,2020,38(4):814-821. [12] 宋哲,高建平,潘龙帅,等. 基于主成分分析和改进支持向量机的锂离子电池健康状态预测[J]. 汽车技术,2020(11):21-27. SONG Zhe,GAO Jianping,PAN Longshuai,et al. Prediction for the state of health of lithium-ion batteries based on PCA and improved SVR[J]. Automobile Te-chnology,2020(11):21-27. [13] FANG Y,DONG W,FAN X,et al. Lifespan prediction of lithium-ion batteries based on various extracted features and gradient boosting regression tree model[J]. Journal of Power Sources,2020,476:228654. [14] WANG R,FENG H. Remaining useful life prediction of lithium-ion battery using a novel health indicator[J]. Quality and Reliability Engineering International,2021,37(3):1232-1243. [15] 庞晓琼,王竹晴,曾建潮,等. 基于PCA-NARX的锂离子电池剩余使用寿命预测[J]. 北京理工大学学报,2019,39(4):406-412. PANG Xiaoqiong,WANG Zhuqing,ZENG Jianchao,et al. Prediction for remaining useful life of lithium-ion battery based on PCA-NARX[J]. Transactions of Beijing Institute of Technology,2019,39(4):406-412. [16] 陈则王,李福胜,林娅,等. 基于GA-ELM的锂离子电池RUL间接预测方法[J]. 计量学报,2020,41(6):735-742. CHEN Zewang,LI Fusheng,LIN Ya,et al. Indirect prediction method of RUL for lithium-ion battery based on GA-ELM[J]. Acta Metrologica Sinica,2020,41(6):735-742. [17] 彭宇,刘大同. 数据驱动故障预测和健康管理综述[J]. 仪器仪表学报,2014,35(3):481-495. PENG Yu,LIU Datong. Data-driven prognostics and health management:A review of recent advances[J]. Chinese Journal of Scientific Instrument,2014,35(3):481-495. [18] SPECHT D F. A general regression neural network[J]. IEEE Transactions on Neural Networks,1991,2(6):568-576. [19] 冯志鹏,宋希庚,薛冬新,等. 基于广义回归神经网络的时间序列预测研究[J]. 振动、测试与诊断,2003(2):29-33,68. FENG Zhipeng,SONG Xigeng,XUE Dongxin,et al. General regression neural network based prediction of time series[J]. Journal of Vibration,Measurement & Diagnosis,2003(2):29-33,68. [20] 张淑清,任爽,姜安琦,等. PCA-GRNN在综合气象短期负荷预测中的应用[J]. 计量学报,2017,38(3):340-344. ZHANG Shuqing,REN Shuang,JIANG Anqi,et al. Application of PCA-GRNN in integrated meteorological short-term load forecasting[J]. Acta Metrologica Sinica,2017,38(3):340-344. [21] GUANGBIN Huang,QINYU Zhu,CHEEKHEONG S. Extreme learning machine:Theory and applications[J]. Neurocomputing,2006,70(1-3):489-501. [22] RASHEDI E,NEZAMABADI-POUR H,SARYAZDI S. GSA:A Gravitational search algorithm[J]. Information Sciences,2009,179(13):2232-2248. [23] 蔡改贫,赵小涛,张丹荣,等. 基于ASOS-ELM的湿式球磨机负荷软测量方法[J]. 振动. 测试与诊断,2020,40(1):184-192,211. CAI Gaipin,ZHAO Xiaotao,ZHANG Danrong,et al. Soft measurement method of wet ball mill load based on ASOS-ELM[J]. Journal of Vibration,Measurement & Diagnosis,2020,40(1):184-192,211. [24] JINGSEN L,YUHAO X,YU L. A gravitational search algorithm with adaptive mixed mutation for function optimization[J]. International Journal of Performability Engineering,2018,14(4):681-690. [25] 姜媛媛,刘柱,罗慧,等. 锂电池剩余寿命的ELM间接预测方法[J]. 电子测量与仪器学报,2016,30(2):179-185. JIANG Yuanyuan,LIU Zhu,LUO Hui,et al. ELM indirect prediction method for the remaining life of lithium-ion battery[J]. Journal of Electronic Measurement and Instrumentation,2016,30(2):179-185. [26] 邵良杉,李臣浩. 基于改进花粉算法的极限学习机分类模型[J]. 计算机工程与应用,2020,56(1):172-179. SHAO Liangshan,LI Chenhao. Improved flower pollination algorithm extreme learning machine classification model[J]. Computer Engineering and Applications,2020,56(1):172-179. [27] 王瀛洲,倪裕隆,郑宇清,等. 基于ALO-SVR的锂离子电池剩余使用寿命预测[J]. 中国电机工程学报,2021,41(4):1445-1457,1550. WANG Yingzhou,NI Yulong,ZHENG Yuqing,et al. Remaining useful life prediction of lithium-ion batteries based on support vector regression optimized and ant lion optimizations[J]. Proceedings of the CSEE,2021,41(4):1445-1457,1550. [28] WU Peihao,LYU Nawei,SONG Yuhang,et al. Li-ion battery failure warning methods for energy-storage systems[J]. Chinese Journal of Electrical Engineering,2024,10(1):86-100. [29] LI Kuijie,LI Yalun,RUI Xinyu,et al. Experimental study on the effect of state of charge on failure propagation characteristics within battery modules[J]. Chinese Journal of Electrical Engineering,2023,9(3):3-14. [30] LIU Z,SUN G,BU S,et al. Particle learning framework for estimating the remaining useful life of lithium-ion batteries[J]. IEEE Transactions on Instrumentation and Measurement,2016(99):1-14.