[1] CHEN P H,CHANG S W,CHIANG K F,et al. High power electronic component:Review[J]. Recent Patents on Engineering,2008,1(4):174-188. [2] 王辉,汤勇,余建军. 相变传热微通道技术的研究进展[J]. 机械工程学报,2010,46(24):101-106. WANG Hui,TANG Yong,YU Jianjun. Recent advances of the phase change micro-channel cooling structure[J]. Journal of Mechanical Engineering,2010,46(24):101-106. [3] LV L C,LI J. Micro flat heat pipes for microelectronics cooling: review[J]. Recent Patents on Mechanical Engineering,2013,6(3):169-184. [4] GARIMELLA S V. Advances in mesoscale thermal management technologies for microelectronics[J]. Microelectronics Journal,2006,37(11):1165-1185. [5] MARCINICHEN J B,THOME J R,MICHEL B. Cooling of microprocessors with micro-evaporation:A novel two-phase cooling cycle[J]. International Journal of Refrigeration,2010,33(7):1264-1276. [6] MARCINICHEN J B,OLIVIER J A,LAMAISON N,et al. Advances in electronics cooling[J]. Heat Transfer Engineering,2013,34(5-6):434-446. [7] WANG C,LIU Z,ZHANG G,et al. Experimental investigations of flat plate heat pipes with interlaced narrow grooves or channels as capillary structure[J]. Experimental Thermal and Fluid Science,2013,48(7):222-229. [8] PUTRA N,YANUAR,ISKANDAR F N. Application of nanofluids to a heat pipe liquid-block and the thermoelectric cooling of electronic equipment[J]. Experimental Thermal and Fluid Science,2011,35:1274-1281. [9] CHEN X,YE H,FAN X,et al. A review of small heat pipes for electronics[J]. Applied Thermal Engineering,2015,96:1-17. [10] 乔铁梁,崔晓钰,韩华,等. 甲醇/丙酮振荡热管的传热性能研究[J]. 机械工程学报, 2014, 50(18):148-154. QIAO Tieliang,CUI Xiaoyu,HAN Hua,et al. Research of the heat-transfer performance on methanol/acetone oscillating heat pipe[J]. Journal of Mechanical Engineering,2014,50(18):148-154. [11] SHABANY Y. Heat transfer:Thermal management of electronics[J]. Aip Conference,2009,1088(1):227-230. [12] FUKUSHIMA K,NAGANO H. New evaporator structure for micro loop heat pipes[J]. International Journal of Heat and Mass Transfer,2017,106:1327-1334. [13] SINGH M,KONDARAJU S,BAHGA S S. Enhancement of thermal performance of micro heat pipes using wettability gradients[J]. International Journal of Heat and Mass Transfer,2017,104:400-408. [14] SINGH R, AKBARZADEH A, MOCHIZUKI M. Thermal potential of flat evaporator miniature loop heat pipes for notebook cooling[J]. IEEE Transactions on Components and Packaging Technologies, 2010, 33(1):32-45. [15] ZHOU G,LI J,LÜ L. An ultra-thin miniature loop heat pipe cooler for mobile electronics[J]. Applied Thermal Engineering,2016,109:514-523. [16] LI Y,HE J,HE H,et al. Investigation of ultra-thin flattened heat pipes with sintered wick structure[J]. Applied Thermal Engineering,2015,86:106-118. [17] LI Y,ZHOU W,HE J,et al. Thermal performance of ultra-thin flattened heat pipes with composite wick structure[J]. Applied Thermal Engineering,2016,102:487-499. [18] MAYDANIK Y F. Loop heat pipes[J]. Applied Thermal Engineering,2005,25(5-6):635-657. [19] 徐计元, 邹勇, 程林. 环路热管复合毛细芯的孔结构优化与性能研究[J]. 中国机电工程学报,2012,32(23):70-74. XU Jiyuan,ZOU Yong,CHENG Lin. Pore structure optimization and properties of composite wicks for looped heat pipes[J]. Proceedings of the CSEE,2012,32(23):70-74. [20] BUFFONE C, COULLOUX J, ALONSO B, et al. Capillary pressure in graphene oxide nanoporous membranes for enhanced heat transport in loop heat pipes for aeronautics[J]. Experimental Thermal and Fluid Science,2016,78:147-152. [21] LI J,LIN F,WANG D M,et al. A loop-heat-pipe heat sink with parallel condensers for high-power integrated LED chips[J]. Applied Thermal Engineering,2013,56(1-2):18-26. [22] MAYDANIK Y F,CHERNYSHEVA M A,PASTUKHOV V G. Review:Loop heat pipes with flat evaporators[J]. Applied Thermal Engineering,2014,67(1-2):294-307. [23] MAHMOUD N A. Reproducing hoop stress-strain behavior for tubular material using lateral compression test[J]. International Journal of Mechanical Sciences,2003,45:605-621. [24] GUPTA N K,SEKHON G S,GUPTA P K. Study of lateral compression of round metallic tubes[J]. Thin-walled Structures,2005,43:895-922. [25] LAILA S B. Analysis of flow and stresses in flattening a circular tube by rolling[J]. Journal of Materials Processing Technology,2002,128:130-135. [26] JIANG L,TANG Y,PAN M,et al. Phase change flattening process for axial grooved heat pipe[J]. Journal of Materials Processing Technology,2012,212:331-338. [27] TANG Y,DENG D,HUANG G,et al. Effect of fabrication parameters on capillary performance of composite wicks for two-phase heat transfer devices[J]. Energy Conversion and Management,2013,66(1):66-76. [28] DENG D,LIANG D,TANG Y,et al. Evaluation of capillary performance of sintered porous wicks for loop heat pipe[J]. Experimental Thermal and Fluid Science,2013,50(10):1-9. [29] BYON C,KIM S J. Capillary performance of bi-porous sintered metal wicks[J]. International Journal of Heat and Mass Transfer,2012,55(15-16):4096-4103. [30] 蒋乐伦. 扁平热管微孔槽烧结复合吸液芯成形及传热性能研究[D]. 广州:华南理工大学,2011. JIANG Lelun. Manufacture and thermal performance of sintered-grooved composite wick in the flattened heat pipe[D]. Guangzhou:South China University of Technology,2011. [31] AOKI H,IKEDA M,KIMURA Y. Ultra thin heat pipe and its application[J]. Frontiers in Heat Pipes,2011,2:1-5. [32] KOJI Y,KENJI N,HIDEAKI K,et al. Micro heat-pipe with 1-mm thickness[J]. Furukawa Review,2002,22:1-2. [33] AOKI H,SHIOYA N,IKEDA M,et al. Development of ultra thin plate-type heat pipe with less than 1 mm thickness[C]//Semiconductor Thermal Measurement and Management Symposium,February 21-25,2010,Santa Clara,CA,United states:IEEE,2010:1065-2221. [34] 白豪. 超薄热管的扁状薄化编织网毛细结构及其超薄热管结构:中国,201310734439.2[P]. 2013-12-23. BAI Hao. The structure of flat-thin mesh wick and ultra-thin heat pipe:China,201310734439.2[P]. 2013-12-23. [35] OSHMAN C,QIAN L,LIEW L A,et al. Flat flexible polymer heat pipes[J]. Journal of Micromechanics and Microengineering,2013,23:1-6. [36] TANG Y,TANG H,LI J,et al. Experimental investigation of capillary force in a novel sintered copper mesh wick for ultra-thin heat pipes[J]. Applied Thermal Engineering,2017,115:1020-1030. [37] HU J,YUAN W,YAN Z,et al. Fabricating an enhanced stable superhydrophobic surface on copper plates by introducing a sintering process[J]. Applied Surface Science,2015,355:145-152. [38] LEE K. Ultra thin heat pipe:US,US20100266864 A1[P]. 2010-10-21. [39] 何恒飞. 压扁型超薄烧结式微热管制造方法及性能分析[D]. 广州:华南理工大学,2014. HE Hengfei. Manufacturing process and performance analysis of ultra-thin flattened micro heat pipe sintered with copper powder[D]. Guangzhou:South China University of Technology,2014. [40] ZHANG L W. An experimental study on applying miniature loop heat pipes for laptop PC cooling[EB/OL].[2016-01]. https://community.asme.org/….pdf. [41] DING C,GAURAV S,PAYAM B,et al. A flat heat pipe architecture based on nanostructured titania[J]. Journal of Microelectromechanical Systems,2010,19(4):878-884. [42] KANG S W, HUANG D. Fabrication of star grooves and rhombus grooves micro heat pipe[J]. Journal of Micromechanics and Microengineering,2002,12:525-531. [43] GILLOT C,AVENAS Y,CEZAC N,et al. Silicon heat pipes used as thermal spreaders[J]. IEEE Transactions on Components and Packaging Technologies,2003,26(2):332-339. [44] IVANOVA M,LAI A,GILLOT C,et al. Design,fabrication and test of silicon heat pipes with radial microcapillary grooves[C]//Thermal and Thermomechanical Phenomena in Electronics Systems,May 30-June 2,2006, San Diego,CA. New York:IEEE,2006:1087-9870. [45] WANG Z,ZHANG N,JIAO B,et al. Investigation of thermal characteristics and two-phase flows of a star-shape thin heat pipe[J]. Applied Thermal Engineering,2016,103:9-15. [46] LEWIS R,LIEW L A,XU S,et al. Microfabricated ultra-thin all-polymer thermal ground planes[J]. Science Bulletin,2015,60(7):701-706. [47] POPOVA N,SCHAEFFER C,AVENAS Y,et al. Fabrication and experimental investigation of innovative sintered very thin copper heat pipes for electronics applications[C]//Power Electronics Specialists Conference,June 18-22,2006,Jeju,Korea. New York:IEEE,2006,120(6):1-5. [48] POPOVA N,SCHAEFFER C,AVENAS Y,et al. Fabrication and thermal performance of a thin flat heat pipe with innovative sintered copper wick structure[C]//Industry Applications Conference,October 8-12,2006,Tampa,FL. New York:IEEE,2006:0197-2618. [49] KAMENOVA L,AVENAS Y,SCHAEFFER C,et al. DBC technology for extremely thin flat heat pipes[J]. Industry Applications,IEEE Transactions on,2009,45(5):1763-1769. [50] 朱胜利. 一种超薄热管:中国,201310469903.X[P]. 2013-10-10. ZHU Shengli. An ultra-thin heat pipe:China, 201310469903.X[P]. 2013-10-10. [51] LI J,LV L. Experimental studies on a novel thin flat heat pipe heat spreader[J]. Applied Thermal Engineering,2016,93:139-146. [52] LV L, LI J. Effect of charging ratio on thermal performance of a miniaturized two-phase super-heat-spreader[J]. International Journal of Heat and Mass Transfer,2017,104:489-492. [53] 何嘉斌. 复合吸液芯超薄微热管制造工艺及传热性能分析[D]. 广州:华南理工大学, 2015. HE Jiabin. Fabrication process and thermal performance analysis of ultra-thin flattened micro heat pipe sintered with composited wick structure[D]. Guangzhou:South China University of Technology,2015. [54] 徐计元,邹勇. 环路热管毛细结构的研究进展[J]. 中国电机工程学报,2013,33(8):65-73. XU Jiyuan,ZOU Yong. Research and development of capillary structure in loop heat pipe[J]. proceedings of the CSEE,2013,33(8):65-73. [55] 李强,周海迎,宣益民. 复合结构毛细蒸发器传热特性研究[J]. 工程热物理学报,2008,29(1):148-150. LI Qiang,ZHOU Haiying,XUAN Yimin. Investigation on heat transfer characteristics of composite capillary evaporator[J]. Journal of Engineering Thermophysics,2008,29(1):148-150. [56] SEMENIC T,LIN Y Y,CATTON I,et al. Use of biporous wicks to remove high heat fluxes[J]. Applied Thermal Engineering,2008,28(4):278-283. [57] SEMENIC T,CATTON I. Experimental study of biporous wicks for high heat flux applications[J]. International Journal of Heat and Mass Transfer,2009,52(21-22):5113-5121. [58] YEH C C,CHEN C N,CHEN Y M. Heat transfer analysis of a loop heat pipe with biporous wicks[J]. International Journal of Heat and Mass Transfer,2009,52(19):4426-4434. [59] KISEEV V W,VLASSOV V V,MURAOKA I. Experimental optimization of capillary structures for looped heat pipes and heat switches[J]. Applied Thermal Engineering,2010,30:1312-1319. [60] LIN Z R,LIN W Z,ZHANG L W,et al. An experimental study on applying miniature loop heat pipes for laptop PC cooling[J]. Annual IEEE Semiconductor Thermal Measurement and Management Symposium,2013,154-158. [61] MAYDANIK Y F,PASTUKHOV V G,CHERNYSHEVA M A. Development and investigation of a miniature copper-acetone loop heat pipe with a flat evaporator[J]. Journal of Electronics Cooling and Thermal Control,2015,5(4):77-88. [62] FUKUSHIMA K,NAGANO H. New evaporator structure for micro loop heat pipes[J]. International Journal of Heat and Mass Transfer,2017,106:1327-1334. [63] HONG S,ZHANG X,WANG S,et al. Experiment study on heat transfer capability of an innovative gravity assisted ultra-thin looped heat pipe[J]. International Journal of Thermal Sciences,2015,95:106-114. [64] 汪双凤,洪思慧,唐永乐,等. 一种改进型的超薄环路热管:中国,201510255962.6[P]. 2015-05-18. WANG Shuangfeng, HONG Sihui, TANG Yongle, et al. An innovative ultra-thin looped heat pipe:China,201510255962.6[P]. 2015-05-18. [65] HONG S,ZHANG X,TANG Y,et al. Experiment research on the effect of the evaporator’s configuration design of an innovative ultra-thin looped heat pipe[J]. International Journal of Heat and Mass Transfer,2016,92:497-506. [66] HONG S,WANG S,ZHANG Z. Multiple orientations research on heat transfer performances of ultra-thin loop heat pipes with different evaporator structures[J]. International Journal of Heat and Mass Transfer,2016,98:415-425. [67] ANTON S. Fujitsu develops ultra-thin heat-pipes to cool-down mobile devices[EB/OL].[2015-03-14]. http://www.kitguru.net/components/cooling/anton-shilov/fujitsu-develops-ultra-thin-loop-heat-pipes-to-cool-down-ultra-thin-devices/. [68] SHIOGA T,MIZUNO Y. Micro loop heat pipe for mobile electronics applications[C]//Thermal Measurement, Modeling and Management Symposium. Proceedings of a meeting held 15-19 March 2015,San Jose,CA. New York:IEEE,2015:50-55. |