Journal of Mechanical Engineering ›› 2018, Vol. 54 ›› Issue (20): 24-39.doi: 10.3901/JME.2018.20.024
Previous Articles Next Articles
LIU Yahua, SUN Yanjun, GUO Chunfang, ZHAO Danyang
Received:
2018-01-15
Revised:
2018-08-16
Online:
2018-10-20
Published:
2018-10-20
CLC Number:
LIU Yahua, SUN Yanjun, GUO Chunfang, ZHAO Danyang. Review on Recent Progress in Boiling Modes and Self-migration of Droplets on Heated Surfaces[J]. Journal of Mechanical Engineering, 2018, 54(20): 24-39.
[1] MOREIRA A L N,MOITA A S,PANÃO M R. Advances and challenges in explaining fuel spray impingement:How much of single droplet impact research is useful?[J]. Progress in Energy and Combustion Science,2010,36(5):554-580. [2] KO S H,CHUNG J,HOTZ N,et al. Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication[J]. Journal of Micromechanics and Microengineering,2010,20:125010. [3] MASCARENHAS N,MUDAWAR I. Methodology for predicting spray quenching of thick-walled metal alloy tubes[J]. International Journal of Heat and Mass Transfer,2012,55(11-12):2953-2964. [4] KIM J. Spray cooling heat transfer:The state of the art[J]. International Journal of Heat and Fluid Flow,2007,28(4):753-767. [5] BIANCE A,CLANET C,QUÉRÉ D. Leidenfrost drops[J]. Physics of Fluids,2003,15(6):1632. [6] LEIDENFROST J G. On the fixation of water in diverse fire[J]. International Journal of Heat & Mass Transfer,1966,9(11):1153-1166. [7] ALIYU A S. Fukushima nuclear accident:Highlights of the lessons learned in nuclear safety and accident dosimetry[EB/OL].[2015-01-05]. https://www.researhgate.net/publication/271198453. [8] IMPROVING C,PLANTS S,BOARD N,et al. Lessons learned from the Fukushima Nuclear Accident for improving safety of U.S.A Nuclear Plants[M]. Washington (DC):National Academies Press (US),2014. [9] VAKARELSKI I U,MARSTON J O,CHAN D Y C,et al. Drag reduction by Leidenfrost vapor layers[J]. Physical Review Letters,2011,106(21):450121. [10] VAKARELSKI I U,CHAN D Y C,MARSTON J O,et al. Dynamic air layer on textured superhydrophobic surfaces[J]. Langmuir,2013,29(35):11074-11081. [11] LIANG G,MUDAWAR I. Review of drop impact on heated walls[J]. International Journal of Heat and Mass Transfer,2017,106:103-126. [12] WANG A B,LIN C H,CHENG C C. Pattern analysis of a single droplet impinging onto a heated plate[J]. Heat Transfer-Asian Research,2005,34(8):579-594. [13] SHIRO N. The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure[J]. International Journal of Heat and Mass Transfer,1984,27(7):959-970. [14] XIONG T Y,YUEN M C. Evaporation of a liquid droplet on a hot plate[J]. International Journal of Heat and Mass Transfer,1991,34(7):1881-1894. [15] GOTTFRIED B S,LEE C J,BELL K J. The Leidenfrost phenomenon:film boiling of liquid droplets on a flat plate[J]. International Journal of Heat and Mass Transfer,1966,9(11):1167-1188. [16] TARTARINI P,LORENZINI G,RANDI M R. Experimental study of water droplet boiling on hot,non-porous surfaces[J]. Heat and Mass Transfer,1999,34(6):437-447. [17] 王晓东,陆规,彭晓峰,等. 加热板上蒸发液滴动态特性的实验[J]. 航空动力学报,2006(6):1001-1007. WANG Xiaodong,LU Gui,PENG Xiaofeng,et al. Experimental investigation of dynamic evaporation characteristics of liquid droplet on heated surface[J]. Journal of Aerospace Power,2006,21(6):1001-1007. [18] SON G,DHIR V K. Dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface[J]. Journal of Heat Transfer,1999,121(3):623-631. [19] CHO H J,PRESTON D J,ZHU Y,et al. Nanoengineered materials for liquid-vapour phase-change heat transfer[J]. Nature Reviews Materials,2016,2(2):16092. [20] CHU K,ENRIGHT R,WANG E N. Structured surfaces for enhanced pool boiling heat transfer[J]. Applied Physics Letters,2012,100(24):241603. [21] SINHA-RAY S,ZHANG Y,YARIN A L. Thorny devil nanotextured fibers:The way to cooling rates on the order of 1 kw/cm2[J]. Langmuir,2011,27(1):215-226. [22] PAUL G,MANNA I,KUMAR DAS P. Formation,growth,and eruption cycle of vapor domes beneath a liquid puddle during Leidenfrost phenomena[J]. Applied Physics Letters,2013,103(8):84101. [23] COSSALI G E,MARENGO M,SANTINI M. Thermally induced secondary drop atomisation by single drop impact onto heated surfaces[J]. International Journal of Heat and Fluid Flow,2008,29(1):167-177. [24] MARTIN R. Interactions between drops and hot surfaces[M]. Vienna:Drop-Surface Interactions,Springer,2002. [25] CASTANET G,LIÉNART T,LEMOINE F. Dynamics and temperature of droplets impacting onto a heated wall[J]. International Journal of Heat and Mass Transfer,2009,52(3):670-679. [26] BERNARDIN J D,STEBBINS C J,MUDAWAR I. Mapping of impact and heat transfer regimes of water drops impinging on a polished surface[J]. International Journal of Heat and Mass Transfer,1997,40(2):247-267. [27] TANG C,QIN M,WENG X,et al. Dynamics of droplet impact on solid surface with different roughness[J]. International Journal of Multiphase Flow,2017,96:56-69. [28] 张瑜,宁智,吕明,等. 液滴撞击高温壁面的运动特性[J]. 燃烧科学与技术,2017,23(5):451-457. ZHANG Yu,NING Zhi,LÜ Ming,et al. Dynamics of droplet impacting onto heated surface[J]. Journal of Combustion Science and Technology,2017,23(5):451-457. [29] WANG A,LIN C,CHEN C. The critical temperature of dry impact for tiny droplet impinging on a heated surface[J]. Physics of Fluids,2000,12(6):1622-1625. [30] LIANG G,SHEN S,GUO Y,et al. Boiling from liquid drops impact on a heated wall[J]. International Journal of Heat and Mass Transfer,2016,100:48-57. [31] ZHANG W,YU T,FAN J,et al. Droplet impact behavior on heated micro-patterned surfaces[J]. Journal of Applied Physics,2016,119(11):114901. [32] TRAN T,STAAT H J J,SUSARREY-ARCE A,et al. Droplet impact on superheated micro-structured surfaces[J]. Soft Matter,2013,9(12):3272-3282. [33] SHIROTA M,VAN LIMBEEK M A,SUN C,et al. Dynamic Leidenfrost effect:Relevant time and length scales[J]. Physical Review Letters,2016,116(6):64501. [34] KHAVARI M,SUN C,LOHSE D,et al. Fingering patterns during droplet impact on heated surfaces[J]. Soft Matter,2015,11(17):3298-3303. [35] STAAT H J J,TRAN A T,GEERDINK B M,et al. Phase diagram for droplet impact on superheated surfaces[J]. Journal of Fluid Mechanics,2015,779:R3. [36] VAN LIMBEEK M A J,SHIROTA M,SLEUTEL P,et al. Vapour cooling of poorly conducting hot substrates increases the dynamic Leidenfrost temperature[J]. International Journal of Heat and Mass Transfer,2016,97:101-109. [37] BERTOLA V. An impact regime map for water drops impacting on heated surfaces[J]. International Journal of Heat and Mass Transfer,2015,85:430-437. [38] BERGLES A E. ExHFT for fourth generation heat transfer technology[J]. Experimental Thermal and Fluid Science,2002,26(2):335-344. [39] CHU K,SOO JOUNG Y,ENRIGHT R,et al. Hierarchically structured surfaces for boiling critical heat flux enhancement[J]. Applied Physics Letters,2013,102(15):151602. [40] 刘妮,李丽荣,钟泽民. 微结构表面喷雾冷却性能试验研究[J]. 机械工程学报,2017,53(6):158-165. LIU Ni,LI Lirong,ZHONG Zemin. Heat transfer characteristics of spray cooling on micro-structured surface[J]. Journal of Mechanical Engineering,2017,53(6):158-165. [41] 王辉,汤勇,余建军. 相变传热微通道技术的研究进展[J]. 机械工程学报,2010,46(24):101-106. WANG Hui,TANG Yong,YU Jianjun. Recent advances of the phase change micro-channel cooling structure[J]. Journal of Mechanical Engineering,2010,46(24):101-106. [42] BIRD J C,DHIMAN R,KWON H,et al. Reducing the contact time of a bouncing drop[J]. Nature,2013,503(7476):385-388. [43] JEFFREY D N,PATRICK V F. Hydrodynamics of droplet impingement on a heated surface[J]. The Engineering Society for Advancing Mobility Land Sea Air and Space,March 1-5,1993:930919 [44] TRAN T,STAAT H J,PROSPERETTI A,et al. Drop impact on superheated surfaces[J]. Physical Review Letters,2012,108(3):36101. [45] CHAVES H,KUBITZEK A M,OBERMEIER F. Dynamic processes occurring during the spreading of thin liquid films produced by drop impact on hot walls[J]. International Journal of Heat and Fluid Flow,1999,20(5):470-476. [46] NIGMATULIN B I,VASILIEV N I,GUGUCHKIN V V. Interaction between liquid droplets and heated surface[J]. Heat & Mass Transfer,1993,28(28):313-319. [47] FARDAD D,LADOMMATOS N. Evaporation of hydrocarbon compounds,including gasoline and diesel fuel,on heated metal surfaces[J]. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering,1999,213(6):625-645. [48] KRUSE C,ANDERSON T,WILSON C,et al. Extraordinary shifts of the Leidenfrost temperature from multiscale micro/nanostructured surfaces[J]. Langmuir,2013,29(31):9798-9806. [49] QUÉRÉ D. Leidenfrost dynamics[J]. Annual Review of Fluid Mechanics,2013,45(1):197-215. [50] KIM H,TRUONG B,BUONGIORNO J,et al. On the effect of surface roughness height,wettability,and nanoporosity on Leidenfrost phenomena[J]. Applied Physics Letters,2011,98(8):83121. [51] DUPEUX G,BOURRIANNE P,MAGDELAINE Q,et al. Propulsion on a superhydrophobic ratchet[J]. Scientific Reports,2014,4(2973):5280. [52] POMEAU Y,BERRE M L,CELESTINI F,et al. The Leidenfrost effect:from quasi-spherical droplets to puddles[J]. Comptes Rendus-Mécanique. 2012,340(11-12):867-881. [53] LIU G,FU L,RODE A V,et al. Water droplet motion control on superhydrophobic surfaces:Exploiting the Wenzel-to-Cassie transition[J]. Langmuir,2011,27(20):2595-2600. [54] BERNARDIN J D,MUDAWAR I. A Leidenfrost point model for impinging droplets and sprays[J]. Journal of Heat Transfer-Transactions of the ASME,2004,126(2):272-278. [55] FUJIMOTO H,OKU Y,OGIHARA T,et al. Hydrodynamics and boiling phenomena of water droplets impinging on hot solid[J]. International Journal of Multiphase Flow,2010,36(8):620-642. [56] CHANDRA S,AVEDISIAN C T. On the collision of a droplet with a solid surface[J]. Proceedings of the Royal Society A,1991,432:13-41. [57] YAO S C,CAI K Y. The dynamics and Leidenfrost temperature of drops impacting on a hot surface at small angles[J]. Experimental thermal and fluid science,1988,1(4):363-371. [58] NAIR H,STAAT H J,TRAN T,et al. The Leidenfrost temperature increase for impacting droplets on carbon-nanofiber surfaces[J]. Soft Matter,2014,10(13):2102-2109. [59] CELATA G P,CUMO M,MARIANI A,et al. Visualization of the impact of water drops on a hot surface:effect of drop velocity and surface inclination[J]. Heat and Mass Transfer,2006,42(10):885-890. [60] HASSEBROOK A,KRUSE C,WILSON C,et al. Effects of droplet diameter on the Leidenfrost temperature of laser processed multiscale structured surfaces[J]. Inter Society Conference on Thermal and Thermomechanical Phenomena in Electronic Systems,2014:452-457. [61] DUURSMA G,KENNEDY R,SEFIANE K,et al. Leidenfrost droplets on microstructured surfaces[J]. Heat Transfer Engineering,2016,37(13-14SI):1190-1200. [62] BERNARDIN J D,MUDAWAR I. The Leidenfrost point:experimental study and assessment of existing models[J]. Journal of Heat Transfer-Transactions of the ASME,1999,121(4):894-903. [63] BERNARDIN J D,MUDAWAR I. A cavity activation and bubble growth model of the Leidenfrost point[J]. Journal of Heat Transfer-Transactions of the ASME,2002,124(5):864-874. [64] JONES S F,EVANS G M,GALVIN K P. Bubble nucleation from gas cavities-a review[J]. Advances in Colloid and Interface Science,1999,80(1):27-50. [65] BRADFIELD W S. Liquid-solid contact in stable film boiling[J]. Industrial and Engineering Chemsitry Fundamentals,1966,5(2):200. [66] BAUMEISTER K J,HENRY R E,SIMON F F. Role of the surface in the measurement of the Leidenfrost temperature[J]. NASA Technical Memorandum,1970. [67] PRAT M,SCHMITZ P,POULIKAKOS D. On the effect of surface roughness on the vapor flow under Leidenfrost-levitated droplets[J]. Journal of Fluids Engineering-Transactions of the ASME,1995,117(3):519-525. [68] KIM H,BUONGIORNO J,HU L,et al. Nanoparticle deposition effects on the minimum heat flux point and quench front speed during quenching in water-based alumina nanofluids[J]. International Journal of Heat and Mass Transfer,2010,53(7):1542-1553. [69] KIM H,DEWITT G,MCKRELL T,et al. On the quenching of steel and zircaloy spheres in water-based nanofluids with alumina,silica and diamond nanoparticles[J]. International Journal of Multiphase Flow,2009,35(5):427-438. [70] 陈宏霞,黄林滨,宫逸飞. 多孔结构及表面浸润性对池沸腾传热影响的研究进展[J]. 化工进展,2017,36(8):2798-2808. CHEN Hongxia,HUANG Linbing,GONG Yifei. Progress on boiling heat transfer from porous structure and surface wettability[J]. Chemical Industry and Engineering Progress,2017,36(8):2798-2808. [71] 郑晓欢,纪献兵,王野,等. 沸腾传热结构化表面与多尺度协同研究进展[J]. 化工设计,2015,25(2):3-7. ZHENG Xiaohuan,JI Xianbing,WANG Ye,et al. Boiling heat transfer structured surface and multi-scale synergy research progress[J]. Chemical Engineering Design. 2015,25(2):3-7. [72] KWON H,BIRD J C,VARANASI K K. Increasing Leidenfrost point using micro-nano hierarchical surface structures[J]. Applied Physics Letters,2013,103(20):201601. [73] AVEDISIAN C T,KOPLIK J. Leidenfrost boiling of methanol droplets on hot porous/ceramic surfaces[J]. International Journal of Heat and Mass Transfer,1987,30(2):379-393. [74] CHANDRA S,AVEDISIAN C T. Observations of droplet impingement on a ceramic porous surface[J]. International Journal of Heat and Mass Transfer,1992,35(10):2377-2388. [75] 魏进家,张永海. 柱状微结构表面强化沸腾换热研究综述[J]. 化工学报,2016(1):97-108. WEI Jingjia,ZHANG Yonghai. Review of enhanced boiling heat transfer over micro-pin-finned surfaces[J]. CIESC Journal,2016(1):97-108. [76] CERRO D,MARÍN Á G,RÖMER G,et al. Leidenfrost point reduction on micropatterned metallic surfaces[J]. Langmuir,2012,28(42):15106-15110. [77] BAUMEISTER K J,HAMILL T D,HENDRICKS R C. Metastable Leidenfrost states[R]. NASA Technical Note,1966. [78] DUURSMA G,KENNEDY R,SEFIANE K. The Leidenfrost phenomenon on structured surfaces[C/CD]//The 4th Micro and Nano Flows Conference,September 7-10,2014. UCL,London,UK. [79] FENG R,WU X,XUE Q. Profile characterization and temperature dependence of droplet control on textured surfaces[J]. Chinese Science Bulletin,2011,56(18):1930-1934. [80] HAYS R,MAYNES D,CROCKETT J. Thermal transport to droplets on heated superhydrophobic substrates[J]. International Journal of Heat and Mass Transfer,2016,98:70-80. [81] WEICKGENANNT C M,ZHANG Y,SINHARAY S,et al. Inverse-Leidenfrost phenomenon on nanofiber mats on hot surfaces[J]. Physical Review E Statistical Nonlinear and Soft Matter Physics,2011,84:36310. [82] FLETCHER N H. Size effect in heterogeneous nucleation[J]. Journal of Chemical Physics,1958,29(3):572-576. [83] 李佳琦,苏悠悠,范利武,等. 超疏水表面膜态池沸腾传热实验研究[J]. 工程热物理学报,2015,36(8):1769-1773. LI Jiaqi,SU Youyou,FAN Liwu,et al. An experimental study of pool film boiling heat transfer on superhydrophobic surfaces[J]. Journal of Engineering Thermophysics,2015,36(8):1769-1773. [84] ZHENG Xiaohuan,JI Xianbing,Wang Ye et al. Pool boiling heat transfer on superhydrophilic and superhydrophobic surfaces[J]. Chemical Industry and Engineering Progress,2016,35(12):3793-3798. [85] KIM C,SON Y. Spreading of inkjet droplet of non-Newtonian fluid on solid surface with controlled contact angle at low Weber and Reynolds numbers[J]. Journal of Non-Newtonian Fluid Mechanics,2009,162(1):78-87. [86] ZHANG B J,KIM K J. Nucleate pool boiling heat transfer augmentation on hydrophobic self-assembly mono-layered alumina nano-porous surfaces[J]. International Journal of Heat and Mass Transfer,2014,73:551-561. [87] YU Y J,OSADA H,INAGAKI M,et al. Wall thermal conductivity effects on nucleation site interaction during boiling:an experimental study[C]//Proceedings of the 14th International Heat Transfer Conference,August 8-13,Washington,DC,USA,2010:637-646. [88] YANG C,LEONG K. Influences of substrate wettability and liquid viscosity on isothermal spreading of liquid droplets on solid surfaces[J]. Experiments in Fluids,2002,33(5):728-731. [89] LAAN N,BRUIN K G,BARTOLO D,et al. Maximum diameter of impacting liquid droplets[J]. Physical Review Applied,2014,2(4):044018. [90] KIM S H,KANG J Y,AHN H S,et al. Study of Leidenfrost mechanism in droplet impacting on hydrophilic and hydrophobic surfaces[J]. International Journal of Air-Conditioning and Refrigeration,2013,21(4):1350010-1350028. [91] TAKATA Y,HIDAKA S,CAO J M,et al. Effect of surface wettability on boiling and evaporation[J]. Energy,2005,30(2):209-220. [92] TAKATA Y,HIDAKA S,YAMASHITA A,et al. Evaporation of water drop on a plasma-irradiated hydrophilic surface[J]. International Journal of Heat and Fluid Flow,2004,25(2):320-328. [93] VAKARELSKI I U,PATANKAR N A,MARSTON J O,et al. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces[J]. Nature,2012,489(7415):274-277. [94] CLAVIJO C E,CROCKETT J,MAYNES D. Hydrodynamics of droplet impingement on hot surfaces of varying wettability[J]. International Journal of Heat and Mass Transfer,2017,108:1714-1726. [95] MUNOZ R A,BEVING D,YAN Y S. Hydrophilic zeolite coatings for improved heat transfer[J]. Industrial and Engineering Chemistry Research,2005,44(12):4310-4315. [96] QIAO Y M,CHANDRA S. Spray cooling enhancement by addition of a surfactant[J]. Journal of Heat Transfer-Transactions of the ASME,1998,120(1):92-98. [97] CUI W,CHANDRA S,MCCAHAN S. The effect of dissolving salts in water sprays used for quenching a hot surface:Part 2-Spray cooling[J]. Journal of Heat Transfer-Transactions of the ASME,2003,125(2):333-338. [98] 胡自成,王谦,李昌烽,等. 添加表面活性剂的沸腾换热强化研究进展[J]. 制冷学报,2012,33(6):38-45. HU Zicheng,WANG Qian,LI Changfeng,et al. Review on boiling heat transfer enhancement of surfactant solutions[J]. Journal of Refrigeration,2012,33(6):38-45. [99] QIAO Y M,CHANDRA S. Experiments on adding a surfactant to water drops boiling on a hot surface[J]. Proceedings of the Royal Society A,1997,453(1959):673-689. [100] HUANG C,CAREY V P. The effects of dissolved salt on the Leidenfrost transition[J]. International Journal of Heat and Mass Transfer,2007,50(1):269-282. [101] BERTOLA V,SEFIANE K. Controlling secondary atomization during drop impact on hot surfaces by polymer additives[J]. Physics of Fluids,2005,17(10):108104. [102] BERTOLA V. Drop impact on a hot surface:effect of a polymer additive[J]. Experiments in Fluids,2004,37(5):653-664. [103] JESCHAR D,KRAUSHAAR D,GRIEBEL R. Influence of gases dissolved in cooling water on heat transfer during stable film boiling[J]. Steel Research,1996,67(6):227-234. [104] CUI Q,CHANDRA S,MCCAHAN S. The effect of dissolving gases or solids in water droplets boiling on a hot surface[J]. Journal of Heat Transfer,2001,123(4):719-728. [105] CELESTINI F,FRISCH T,POMEAU Y. Room temperature water Leidenfrost droplets[J]. Soft Matter,2013,9(40):9535-9538. [106] HIROYASU H,KADOTA T,SENDA T. Droplet evaporation on a hot surface in pressurized and heated ambient gas[J]. Bulletin of the JSME,1974,17(110):1081-1087. [107] LABEISH V G. Thermohydrodynamic study of a drop impact against a heated surface[J]. Experimental Thermal and Fluid Science,1994,8(3):181-194. [108] EMMERSON G S. The effect of pressure and surface material on the Leidenfrost point of discrete drops of water[J]. International Journal of Heat and Mass Transfer,1975,18(3):381-386. [109] 蓝美娟,李媛,王喜世. 单液滴撞击受热枫桦木炭化表面的实验研究[J]. 化工学报,2013,64(8):2807-2812. LAN Meijuan,LI Yuan,WANG Xishi. Drop impact onto charring surface of heated Betula costata wood[J]. CIESC Journal,2013,64(8):2807-2812. [110] STONE H A,STROOCK A D,AJDARI A. Engineering flows in small devices[J]. Annual Review of Fluid Mechanics,2004,36(1):381-411. [111] DITTRICH P S,MANZ A. Lab-on-a-chip:microfluidics in drug discovery[J]. Nature Reviews Drug Discovery,2006,5(3):210-218. [112] SPIJKER H T,BOS R,OEVEREN W V,et al. Protein adsorption on gradient surfaces on polyethylene prepared in a shielded gas plasma[J]. Colloids and Surfaces B:Biointerfaces,1999,15(1):89-97. [113] IVANOV A E,EKEROTH J,NILSSON L,et al. Variations of wettability and protein adsorption on solid siliceous carriers grafted with poly (N-isopropylacrylamide)[J]. Journal of Colloid and Interface Science,2006,296(2):538-544. [114] YANG M,RIPOLL M. A self-propelled thermophoretic microgear[J]. Soft Matter,2014,10(7):1006. [115] CHOI W,TUTEJA A,MABRY J M,et al. A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces[J]. Journal of Colloid and Interface Science,2009,339(1):208-216. [116] LONG C J,SCHUMACHER J F,BRENNAN A B. Potential for tunable static and dynamic contact angle anisotropy on gradient microscale patterned topographies[J]. Langmuir,2009,25(22):12982-12989. [117] 江雷冯琳. 仿生智能纳米界面材料[M]. 北京:化学工业出版社,2007. JIANG Lei,FENG Lin. Bioinspired intelligent nanostructured interfacial materials[M]. Beijing:Chemical Industry Press,2007. [118] VAIKUNTANATHAN V,SIVAKUMAR D. Maximum spreading of liquid drops impacting on groove-textured surfaces:Effect of surface texture[J]. Langmuir,2016,32(10):2399-2409. [119] VAIKUNTANATHAN V,SIVAKUMAR D. Transition from Cassie to impaled state during drop impact on groove-textured solid surfaces[J]. Soft Matter,2014,10(17):2991-3002. [120] CHAUDHURY M K,WHITESIDES G M. How to make water run uphill[J]. Science,1992,256(5063):1539-1541. [121] SHASTRY A,CASE M J,BÖHRINGER K F. Directing droplets using microstructured surfaces[J]. Langmuir,2006,22(14):6161-6167. [122] LV C,HAO P. Driving droplet by scale effect on microstructured hydrophobic surfaces[J]. Langmuir,2012,28(49):16958-16965. [123] REYSSAT M,PARDO F,QUÉRÉ D. Drops onto gradients of texture[J]. EPL-Europhys,2009,87(3):36003. [124] CHU K,XIAO R,WANG E N. Uni-directional liquid spreading on asymmetric nanostructured surfaces[J]. Nature Materials,2010,9(5):413-417. [125] CHAUDHURY M K,CHAKRABARTI A,TIBREWAL T. Coalescence of drops near a hydrophilic boundary leads to long range directed motion[J]. Extreme Mechanics Letters,2014,1:104-113. [126] DANIEL S,CHAUDHURY M K,CHEN J C. Fast drop movements resulting from the phase change on a gradient surface[J]. Science,2001,291(5504):633-636. [127] DOSSANTOS D F,ONDARCUHU T. Free-running droplets[J]. Physical Review Letters,1995,75(16):2972-2975. [128] 廖强,顾扬彪,朱恂,等. 梯度表面能材料表面上滴状凝结换热[J]. 化工学报,2007(3):567-574. LIAO Qiang,GU Yangbiao,ZHU Xu,et al. Dropwise condensation heat transfer on surface with gradient surface energy[J]. Journal of Chemical Industry and Engineering,2007(3):567-574. [129] FENG S,WANG S,TAO Y,et al. Radial Wettable Gradient of Hot Surface to Control Droplets Movement in Directions[J]. Scientific Reports,2015,5:10067. [130] MCHALE G,BROWN C V,NEWTON M I,et al. Dielectrowetting driven spreading of droplets[J]. Physical Review Letters,2011,107(18):186101. [131] SUMINO Y,MAGOME N,HAMADA T,et al. Self-running droplet:Emergence of regular motion from nonequilibrium noise[J]. Physical Review Letters,2005,94(6):068301. [132] DING Z,SONG W,ZIAIE B. Sequential droplet manipulation via vibrating ratcheted microchannels[J]. Sensors and Actuators B:Chemical,2009,142(1):362-368. [133] LINKE H,ALEMAN B J,MELLING L D,et al. Self-propelled Leidenfrost droplets[J]. Physical Review Letters,2006,96(15):154502. [134] LAGUBEAU G,MERRER M L,CLANET C,et al. Leidenfrost on a ratchet[J]. Nature Physics,2011,7(5):395-398. [135] COUSINS T R,GOLDSTEIN R E,JAWORSKI J W,et al. A ratchet trap for Leidenfrost drops[J]. Journal of Fluid Mechanics,2012,696:215-227. [136] SNEZHKO A,JACOB E B,S ARANSON I S. Pulsating gliding transition in the dynamics of levitating liquid nitrogen droplets[J]. New Journal of Physics,2008,10(2):43034. [137] NAGY P T,NEITZEL G P. Optical levitation and transport of microdroplets:Proof of concept[J]. Physics of Fluids,2008,20(10):101703. [138] DUPEUX G,CLANET C,HARDT S,et al. Viscous mechanism for Leidenfrost propulsion on a ratchet[J]. EPL,2011,96(5):58001. [139] MARÍN Á G,CERRO D,RÖMER G,et al. Capillary droplets on Leidenfrost micro-ratchets[J]. Physics of Fluids,2012,24(12):122001. [140] CRUSE K,SOMANAS I,ANDERSON T,et al. Self-propelled droplets on heated surfaces with angled self-assembled micro/nanostructures[J]. Microfluidics and Nanofluidics,2015,18:1417-1424. [141] SOTO D,LAGUBEAU G,CLANET C,et al. Surfing on a herringbone[J]. Physical Review Fluids,2016,1(1):013902. [142] GE Y,FAN L S. 3-D modeling of the dynamics and heat transfer characteristics of subcooled droplet impact on a surface with film boiling[J]. International Journal of Heat and Mass Transfer,2006,49(21):4231-4249. [143] KARWA N,ROISMAN T G,STEPHAN P,et al. A hydrodynamic model for subcooled liquid jet impingement at the Leidenfrost condition[J]. International Journal of Thermal Sciences,2011,50(6):993-1000. [144] GROUNDS A,STILL R,TAKASHINA K. Enhanced droplet control by transition boiling[J]. Scientific Reports,2012,2(7):720. [145] LIU C,JU J,MA J,et al. Directional drop transport achieved on high-temperature anisotropic wetting surfaces[J]. Advanced Materials,2014,26(35):6086-6091. [146] AGAPOV R L,BOREYKO J B,BRIGGS D P,et al. Length scale of Leidenfrost ratchet switches droplet directionality[J]. Nanoscale,2014,6(15):9293-9299. [147] OK J T,LOPEZ-OÑA E,NIKITOPOULOS D E,et al. Propulsion of droplets on micro-and sub-micron ratchet surfaces in the Leidenfrost temperature regime[J]. Microfluidics and Nanofluidics,2011,10(5):1045-1054. [148] WÜRGER A. Leidenfrost gas ratchets driven by thermal creep[J]. Physical Review Letters,2011,107(16):164502. [149] 郭永献,梁世强,陈伟. 棘齿形表面液滴膜沸腾自输运模型及分析[C/CD]//中国工程热物理学会,2012. [150] 朱海涛,贾志海. 高温锯齿表面自推进液滴的动态特性[J]. 科学通报,2017,62(13):1422-1429. ZHU Haitao,JIA Zhihai. Dynamic properties of self-propelled droplets on hot ratchet surfaces[J]. Chinese Science Bulletin,2017,62(13):1422-1429. [151] AGAPOV R L,BOREYKO J B,BRIGGS D P,et al. Asymmetric wettability of nanostructures directs Leidenfrost droplets[J]. ACS Nano,2014,8(1):860-867. [152] LI J,HOU Y,LIU Y,et al. Directional transport of high-temperature Janus droplets mediated by structural topography[J]. Nature Physics,2016,12(6):606-612. |
[1] | FANG Xudong, DENG Wubin, WU Zutang, LI Jin, WU Chen, MAEDA Ryutaro, TIAN Bian, ZHAO Libo, LIN Qijing, ZHANG Zhongkai, HAN Xiangguang, JIANG Zhuangde. Respiration Measurement Technology Based on Inertial Sensors:A Review [J]. Journal of Mechanical Engineering, 2024, 60(20): 1-23. |
[2] | FU Yang, ZHANG Yue, MAO Ying, TANG Xiaohua, CHEN Zugao, XU Hewu, YANG Yupei, GAO Bin, TIAN Guiyun. Feature Boosting Framework for Pipeline Multi-sensing Defects Inspection Using an Intelligent Pig System [J]. Journal of Mechanical Engineering, 2024, 60(20): 51-67. |
[3] | WU Jie, SHEN Yifu, HUANG Guoqiang. Investigation into the Microstructure and Properties of 2024Al TIG Joint with Wire Filler Subjected to Friction Stir Processing [J]. Journal of Mechanical Engineering, 2024, 60(20): 153-161. |
[4] | ZHANG Zhiyong, WANG Yuxiang, HUANG Caixia, WU You, DU Ronghua. Vehicle Lateral Collision Warning Based on Grey Prediction and Kalman Filter [J]. Journal of Mechanical Engineering, 2024, 60(20): 240-250. |
[5] | LIAO Guiwen, ZHANG Yi, WEI Kai, LIU Xiaojun, WANG Wei. Coupling Characteristics of Liquid-solid Two-phase Flow Field Structure and Particle Motion Behavior at Restricted Lubrication Interface [J]. Journal of Mechanical Engineering, 2024, 60(20): 351-360. |
[6] | WANG Xu, JIANG Xingyu, YANG Guozhe, SUN Meng, YU Shenhong, BI Kaihang, ZHAO Rizheng, LIU Weijun. Research on Optimization of Human-Machine Interface Layout of Laser Cleaning Equipment Based on PSO-SSA [J]. Journal of Mechanical Engineering, 2024, 60(20): 372-387. |
[7] | WANG Dexiang, ZHANG Yu, JIANG Jingliang, LIU Xinfu, LIU Guoliang. Tribological Mechanism on the Grinding Interface of Nickel-base Superalloy under Minimum Quantity Lubrication with Ionic Liquid and Palm Oil Based Nanofluids [J]. Journal of Mechanical Engineering, 2024, 60(19): 159-171. |
[8] | LI Pu, LU Daixing. A Review of Co-simulation Algorithm [J]. Journal of Mechanical Engineering, 2024, 60(19): 172-186. |
[9] | WANG Xiaoyu, WEI Zhaocheng, WANG Xueqin, WANG Dong. Geometric Modeling of Residual Materials in Impeller Milling with Double Row Slotting [J]. Journal of Mechanical Engineering, 2024, 60(19): 310-317. |
[10] | WANG Gaojian, LIU Li, KANG Dandan, YE Yanhong, DENG Dean. Effect of Ni Content on Microstructure, Mechanical Properties and Corrosion Behavior of Weathering Steel Weld Metal for High-speed Train Bogies [J]. Journal of Mechanical Engineering, 2024, 60(18): 163-172. |
[11] | ZHANG Mingkang, SHI Wenqing, XU Meizhen, WANG Di, CHEN Jie. Compression and Fluid Pressure Drop Properties of Implicit Surface Cellular Structures [J]. Journal of Mechanical Engineering, 2024, 60(18): 394-406. |
[12] | MA Weijia, ZHU Xiaolong, LIU Qingyao, DUAN Xingguang, LI Changsheng. Artificial Intelligence in Robot-assisted Surgery [J]. Journal of Mechanical Engineering, 2024, 60(17): 22-39. |
[13] | YUAN Xiaoqing, WU Tao, YUAN Xun, WANG Wendong. Research on a Full-body Power-assisted Exoskeleton Control Method Based on GSO-RF Intent Recognition Algorithm [J]. Journal of Mechanical Engineering, 2024, 60(17): 91-101. |
[14] | ZHANG Yuze, ZHAO Jingfu, ZHAO Zhenwei, KANG Rongjie, DAI Jiansheng, SONG Zhibin. Design and Analysis of a Parallel Cable Driven Lower Limb Rehabilitation Robot for Multi Joints Training [J]. Journal of Mechanical Engineering, 2024, 60(17): 111-122. |
[15] | LIANG Xu, ZHANG Jianyong, LI Guotao, SU Tingting, HE Guangping, HOU Zengguang. Redundant Parallel Mechanism for Fracture Reduction Surgery: Design, Modeling and Performance Analysis [J]. Journal of Mechanical Engineering, 2024, 60(17): 133-146. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||