Journal of Mechanical Engineering ›› 2025, Vol. 61 ›› Issue (9): 46-77.doi: 10.3901/JME.2025.09.046
WANG Jun1,2, JING Yanyan1,2, DU Xinhao1,2, ZHENG Lijuan1,2, WANG Chengyong1,2, CHEN Ping3
Received:
2024-05-16
Revised:
2024-10-18
Published:
2025-06-12
CLC Number:
WANG Jun, JING Yanyan, DU Xinhao, ZHENG Lijuan, WANG Chengyong, CHEN Ping. Abrasive Waterjet Machining — State of the Art and Future Perspectives[J]. Journal of Mechanical Engineering, 2025, 61(9): 46-77.
[1] 刘巧沐,黄顺洲,何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战[J]. 材料工程,2019,47(2):1-10. LIU Qiaomu,HUANG Shunzhou,HE Aijie. Application requirements and challenges of CMC-SiC composites on aero-engine[J]. Journal of Materials Engineering,2019,47(2):1-10. [2] FAN Shangwu,ZHANG Litong,CHENG Laifei,et al. Effect of braking pressure and braking speed on the tribological properties of C/SiC aircraft brake materials[J]. Composites Science and Technology,2010,70(6):959-965. [3] SILVEYRA J M,FERRARA E,HUBER D L,et al. Soft magnetic materials for a sustainable and electrified world[J]. Science,2018,362(26):418-418. [4] RAYAT M S,GRILL S S,RUPINDER S,et al. Fabrication and machining of ceramic composites-A review on current scenario[J]. Materials and Manufacturing Processes,2017,32(13):1451-1474. [5] LIU Yanchi,WU Chenwu,HUANG Yihui,et al. Interlaminar damage of carbon fiber reinforced polymer composite laminate under continuous wave laser irradiation[J]. Optics and Lasers in Engineering,2017,88:91-101. [6] HE Wenbin,HE Shaotai,DU Jinguang,et al. Fiber orientations effect on process performance for wire cut electrical discharge machining (WEDM) of 2D C/SiC composite[J]. International Journal of Advanced Manufacturing Technology,2019,102 (1):507-518. [7] YUE Xiaoming,LI Qi,YANG Xiaodong. Influence of thermal stress on material removal of Cf/SiC composite in EDM[J]. Ceramics International,2020,46(6):7998-8009. [8] WANG Jun. Abrasive waterjet machining of engineering materials[M]. Uetikon-Zuerich:Trans Tech Publications,2003. [9] 宋拥政,温效康,梁志强. 磨料水射流切割与激光切割,等离子切割的比较分析[J]. 中国机械工程,1994,5(5):8-10. SONG Yongzheng,WEN Xiaokang,LIANG Zhiqiang. Comparative analysis of abrasive water jet cutting,laser cutting and plasma cutting[J]. China Mechanical Engineering,1994,5(5):8-10. [10] HASHISH M. Comparative evaluation of abrasive liquid jet machining systems[J]. Journal of Engineering for Industry-Transactions of the ASME,1993,115(1):44-50. [11] 林志立,卢钱杰,易新华,等. 高压水射流技术的发展与应用[J]. 中国科技产业,2021(5):46-47. LIN Zhili,LU Qianjie,YI Xinhua,et al. Development and application of high pressure water jet technology[J]. Chinese Science and Technology Industry,2021(5):46-47. [12] KOVACEVIC R,HASHISH M,MOHAN R,et al. State of the art of research and development in abrasive waterjet machining[J]. Journal of Manufacturing Science and Engineering,1997,119(4):776-785. [13] SUSUZLU T,HOOGSTRATE A M,KARPUSCHEWSKI B. Initial research on the ultra-high-pressure waterjet up to 700MPa[J]. Journal of Materials Processing Technology,2004,149(1-3):30-36. [14] BRANDT S,LOUIS H. Profiling with 400 MPa fine-beam abrasive water jet[C]//Proceedings of the 10th American Waterjet Conference. Hannover:Institute of Material Science,1999:381-390. [15] ELDOMIATY A A,SHABARA M A,RAHMAN A A,et al. On the modelling of abrasive waterjet cutting[J]. International Journal of Advanced Manufacturing Technology,1996,12(4):255-265. [16] FOLKES J. Waterjet-An innovative tool for manufacturing[J]. Journal of Materials Processing Tech,2009,209(20):6181-6189. [17] DIXIT A,DAVE V,BAID M R. Water jet machining:an advance manufacturing process[J]. International Journal of Engineering Research and General Science,2015,3(2):288-292. [18] PATEL D,THAKKAR J,BHATT T,et al. Review on current investigation and enlargement of abrasive water jet machining[J]. International Journal for Technological Research in Engineering,2014,3(3):2347-4718. [19] 马超,雷玉勇,邱刚. 水射流技术在集成电路制造工艺中的应用[J]. 半导体技术,2007,32(10):854-858. MA Chao,LEI Yuyong,QIU Gang. Application of water jet technology in integrated circuit manufacturing process[J]. Semiconductor Technology,2007,32(10):854-858. [20] 关新宇. 打捞库尔斯克号核潜艇[J]. 建设机械技术与管理,2005,(01):37-39. GUAN Xinyu. Salvage the Kursk nuclear submarine[J]. Construction Machinery Technology and Management,2005,(01):37-39. [21] ALI Y M,WANG Jun. Impact abrasive machining. chapter 9 in machining with abrasives[M]. New York:Springer Science + Business Media,2011. [22] HASHISH M. A model for abrasive waterjet machining[J]. Journal of Engineering Materials and Technology,1989,111(2):154-162. [23] AROLA D,RAMULU M. A study of kerf characteristics in abrasive waterjet machining of graphite/epoxy composite[J]. Journal of Engineering Materials and Technology,1996,118(2):256-265. [24] AROLA D,RAMULU M. Material removal in abrasive waterjet machining of metals Surface integrity and texture[J]. Wear,1997,210(1-2):50-58. [25] HASHISH M. Characteristics of surfaces machined with abrasive waterjets[J]. Transactions ASME Journal of Engineering Materials and Technology,1991,113(3):354-362. [26] WANG Jun. Techniques for enhancing the cutting performance of abrasive waterjets[J]. Key Engineering Materials,2004,257-258:521-526. [27] CHEN F L,WANG Jun,LEMMA E,et al. Striation formation mechanisms on the jet cutting surface[J]. Journal of Materials Processing Technology,2003,141(2):213-218. [28] WANG Jun,GUO Dongming. The cutting performance in multipass abrasive waterjet machining of industrial ceramics[J]. Journal of Materials Processing Technology,2003,133(3):371-377. [29] WANG Jun,KURIYAGAWA T,HUANG Chuanzhen. An experimental study to enhance the cutting performance in abrasive waterjet machining[J]. Machining Science and Technology,2003,7(2):191-207. [30] WANG Jun,LIU Hua,HUANG Chuanzhen. Modelling the depth of jet penetration in abrasive waterjet contouring of alumina ceramics[J]. Materials Science Forum,2004,471-472:462-468. [31] LUO Wusheng,WANG Chengyong,WANG Jun,et al. The development of micro abrasive waterjet machining technology[J]. Advanced Materials Research,2011,188:733-738. [32] HASHISH M. Pressure effects in abrasive waterjet machining[J]. Journal of Engineering Materials and Technology,1989,111(3):221-228. [33] CHUNG Y,GESKIN E S,SINGH P J. Prediction of the geometry of the kerf created in the course of abrasive waterjet machining of ductile materials[J]. Jet Cutting Technology,1992,15:525-541. [34] HASHISH M. A modeling study of metal cutting with abrasive waterjets[J]. Journal of Engineering Materials and Technology,1984,106(1):88-100. [35] WANG Jun,WONG W C K. A study of abrasive waterjet cutting of metallic coated sheet steels[J]. International Journal of Machine Tools and Manufacture,1999,39(6):855-870. [36] WANG Jun. Predictive depth of jet penetration models for abrasive waterjet cutting of alumina ceramics[J]. International Journal of Mechanical Sciences,2007,49(3):306-316. [37] WANG Jun. A new model for predicting the depth of cut in abrasive waterjet contouring of alumina ceramics[J]. Journal of Materials Processing Technology,2009,209(5):2314-2320. [38] WANG Jun. A machinability study of polymer matrix composites using abrasive waterjet cutting technology[J]. Journal of Materials Processing Technology,1999,94(1):30-35. [39] WANG Jun. Abrasive waterjet machining of polymer matrix composites cutting performance,erosive process and predictive models[J]. International Journal of Advanced Manufacturing Technology,1999,15(10):757-768. [40] WANG Jun,GUO Dongming. A predictive depth of penetration model for abrasive waterjet cutting of polymer matrix composites[J]. Journal of Materials Processing Technology,2002,121(2-3):390-394. [41] ZHANG Shijin,WU Yuqiang,CHEN Deshu. Hole- drilling using abrasive water jet in titanium[J]. International Journal of Machining and Machinability of Materials,2011,9(1):47-65. [42] THONGKAEW K,WANG Jun,LI Weiyi. An investigation of the hole machining processes on woven carbon-fiber reinforced polymers (CFRPs) using abrasive waterjets[J]. Machining Science and Technology,2019,23(1-3):19-38. [43] WANG Jun,LIU Hua. Profile cutting on alumina ceramics by abrasive waterjet. Part 1:experimental investigation[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2006,220(5):703-714. [44] WANG Jun,LIU Hua. Profile cutting on alumina ceramics by abrasive waterjet. Part 2:cutting performance models[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2006,220(5):715-725. [45] SHANMUGAM D K,WANG Jun,LIU Hua. Minimisation of kerf tapers in abrasive waterjet machining of alumina ceramics using a compensation technique[J]. International Journal of Machine Tools and Manufacture,2008,48(14):1527-1534. [46] KARTAL F. A review of the current state of abrasive water jet turning machining method[J]. The International Journal of Advanced Manufacturing Technology,2017,88(1):495-505. [47] LI Weiyi,WANG Jun,ALI Y M. An experimental study of radial-mode abrasive waterjet turning of steels[J]. Materials Science Forum,2012,697-698:166-170. [48] LIU Dun,HUANG Chuanzhen,WANG Jun,et al. Modeling and optimization of operating parameters for abrasive water jet turning alumina ceramics using response surface methodology combined with Box-Behnken design[J]. Ceramics International,2014,40(6):7899-7908. [49] LI Weiyi,ZHU Hongtao,WANG Jun,et al. Radial-mode abrasive waterjet turning of short carbon-fiber-reinforced plastics[J]. Machining Science and Technology,2016,20(2):231-248. [50] LI Weiyi,ZHU Hongtao,WANG Jun,et al. An investigation into the radial-mode abrasive waterjet turning process on high tensile steels[J]. International Journal of Mechanical Sciences,2013,77(4):365-376. [51] LIU Dun,HUANG Chuanzhen,WANG Jun,et al. Study on the effect of standoff distance on processing performance of alumina ceramics in two modes of abrasive waterjet turning patterns[J]. Advanced Materials Research,2013,797:21-26. [52] MANU R,BABU N R. Influence of jet impact angle on part geometry in abrasive waterjet turning of aluminium alloys[J]. International Journal of Machining and Machinability of Materials,2008,3(1-2):120-132. [53] 卫排锋. 磨料水射流车削加工单晶硅的实验研究[D]. 成都:西华大学,2011. WEI Paifeng. Experimental study on grinding waterjet turning single crystal silicon[D]. Chengdu:Xihua University,2011. [54] FENG Yanxia,HUANG Chuanzhen,WANG Jun,et al. An experimental study on milling Al2O3 ceramics with abrasive waterjet[J]. Key Engineering Materials,2007,339:500-504. [55] DADKHAHIPOUR K,NGUYEN T,WANG Jun. Mechanisms of channel formation on glasses by abrasive waterjet milling[J]. Wear,2012,292-293:1-10. [56] NGUYEN T,WANG Jun,LI Weiyi. Process models for controlled-depth abrasive waterjet milling of amorphous glasses[J]. International Journal of Advanced Manufacturing Technology,2015,77(5-8):1177-1189. [57] CENAC F,ZITOUNE R,COLLOMBET F,et al. Abrasive waterjet milling of aeronautic aluminum 2024- T3[J]. Proceedings of the Institution of Mechanical Engineers Part L Journal of Materials Design and Applications,2015,229(1):29-37. [58] 杜航,熊杰,陈炜,等. 磨料水射流铣削钛合金深度与表面粗糙度研究[J]. 机械科学与技术,2023,42(7):1063-1069. DU Hang,XIONG Jie,CHEN Wei,et al. Study on depth and surface roughness of abrasive water jet milling titanium alloy[J]. Mechanical Science and Technology,2023,42(7):1063-1069. [59] 赵漫漫,黄涛涛,何雪明. 磨料水射流铣削加工表面质量的研究[J]. 制造业自动化,2018,40(8):75-78. ZHAO Manman,HUANG Taotao,HE Xueming. Study on the surface quality of abrasive water jet milling[J]. Automation in Manufacturing Industry,2018,40 (8):75-78. [60] 尹东杨,陈晓川,鲍劲松. 基于磨料水射流的三维编织复合材料铣削技术研究[J]. 机械工程学报,2021,57(5):273-280. YIN Dongyang,CHEN Xiaochuan,BAO Jinsong. Research on the milling technology of 3D braided composite materials based on abrasive water jet[J]. Journal of Mechanical Engineering,2021,57(5):273-280. [61] 林琳,何周伟,胡涛,等. 磨料水射流抛光技术进展综述[J]. 液压与气动,2022,46(1):74-91. LIN Lin,HE Zhouwei,HU Tao,et al. Review on the development of abrasive water jet polishing technology[J]. Chinese Hydraulics and Pneumatics,2022,46(1):74-91. [62] LIU Hua,WANG Jun,HUANG Chuanzhen. Abrasive waterjet as a flexible polishing tool[J]. International Journal of Materials and Product Technology,2008,31(1):2-13. [63] 方慧,郭培基,余景池. 液体喷射抛光材料去除机理的研究[J]. 光学技术,2004,30(2):248-250. FANG Hui,GUO Peiji,YU Jingchi. Study on the removal mechanism of liquid jet-polished materials[J]. Optical Technology,2004,30(2):248-250. [64] 张文超,武美萍. 磨料水射流抛光45钢工艺参数优化[J]. 机械设计与研究,2017,33(6):113-117. ZHANG Wenchao,WU Meiping. Optimization of process parameters of abrasive water jet polishing 45 steel[J]. Mechanical Design and Research,2017,33 (6):113-117. [65] WANG Chunjin,CHEUNG Chifai,HO Laiting,et al. An investigation of effect of stand-off distance on the material removal characteristics and surface generation in fluid jet polishing[J]. Nanomanufacturing and Metrology,2020,3(9):112-122. [66] GUO Rui,ZHOU Cunlong,YUAN Shengnan. Influence of abrasive water jet parameters on steel surface[J]. Journal of the Minerals,Metals and Materials Society,2020,72(12):4273-4280. [67] 陈正雄,武美萍,强争荣. 磨料水射流抛光生物陶瓷工艺参数优化[J]. 机械设计与研究,2017,33(2):129-132. CHEN Zhengxiong,WU Meiping,QIANG Zhengrong. Optimization of process parameters for abrasive water jet polishing[J]. Mechanical Design and Research,2017,33(2):129-132. [68] LV Zhe,HUANG Chuanzhen,WANG Jun,et al. An experimental research on abrasive water jet polishing of the hard brittle ceramics[J]. Advanced Materials Research,2013,797:15-20. [69] ZHU Hongtao,HUANG Chuanzhen,WANG Jun,et al. Experimental study on abrasive water jet polishing for hard-brittle materials[J]. International Journal of Machine Tools and Manufacture,2009,49(7-8):569-578. [70] XU Shunli,WANG Jun. A study of abrasive waterjet cutting of alumina ceramics with controlled nozzle oscillation[J]. International Journal of Advanced Manufacturing Technology,2005,27(7):693-702. [71] WANG Jun. A focused review on enhancing the abrasive waterjet cutting performance by using controlled nozzle oscillation[J]. Key Engineering Materials,2009,404:33-44. [72] WANG Jun. The effect of jet impinging angle on the cutting performance in AWJ machining of alumina ceramics[J]. Key Engineering Materials,2003,238-239:117-124. [73] 李宗原. 聚合物基复合材料磨料水射流加工缺陷成因及消减策略[D]. 大连:大连理工大学,2019. LI Zongyuan. Causes and reduction strategies of abrasive polymer matrix composites[D]. Dalian:Dalian University of Technology,2019. [74] 张曙光. 基于倾角补偿的磨料水射流曲线切割技术研究[D]. 济南:山东大学,2010. ZHANG Shuguang. Research on the curve cutting technology of abrasive water jet based on inclination compensation[D]. Jinan:Shandong University,2010. [75] 高航,袁业民,陈建锋,等. 航空发动机整体叶盘磨料水射流开坯加工技术研究进展[J]. 航空学报,2020,41(2):6-27. GAO Hang,YUAN Yemin,CHEN Jianfeng,et al. Progress of water jet billet processing technology[J]. Aeronautical Journal,2020,41(2):6-27. [76] 黎明河. 磨料水射流加工整体式涡轮叶盘的研究[D]. 济南:山东大学,2020. LI Minghe. Research on abrasive water jet machining[D]. Jinan:Shandong University,2020. [77] 李增强,赵佩杰,宋雨轩,等. 微磨料水射流加工技术研究现状[J]. 纳米技术与精密工程,2016,14(2):134-144. LI Zengqiang,ZHAO Peijie,SONG Yuxuan,et al. Research status of microabrasive water jet processing technology[J]. Nanotechnology and Precision Engineering,2016,14 (2):134-144. [78] MILLER D S. Micromachining with abrasive waterjets[J]. Journal of Materials Processing Technology,2004,149(1-3):37-42. [79] MILLER D S. Developments in abrasive water jets for micromachining[C]//Proceedings of the 2003 WJTA American Waterjet Conference. Houston:Water Jet Technology Association,2003:429-443. [80] MILLER D S. New abrasive waterjet systems to compete with lasers[C]//Proceedings of the 2005 WJTA American Water Jet Conference. Houston:Water Jet Technology Association,2005:1-11. [81] 王军,黄传真,朱洪涛,等. 精密微细磨料水射流储能式脉冲微量供料系统,中国:CN100486772C[P]. 2009-05-13. WANG Jun,HUANG Chuanzhen,ZHU Hongtao,et al. Precision fine abrasive waterjet energy storage pulse microfeed system,China:CN100486772C[P]. 2009- 05-13. [82] FAN Jingming,FAN Changming,WANG Jun. Flow dynamic simulation of micro abrasive water jet[J]. Solid State Phenomena,2011,175:171-176. [83] NGUYEN T,SHANMUGAM D K,WANG Jun. Effect of liquid properties on the stability of an abrasive waterjet[J]. International Journal of Machine Tools and Manufacture,2008,48(10):1138-1147 [84] LIU H T. Waterjet technology for machining fine features pertaining to micro-machining[J]. Journal of Manufacturing Processes,2010,12(1):8-18. [85] WANG Jun,NGUYEN T,PANG Kinglun. Mechanisms of microhole formation on glasses by an abrasive slurry jet[J]. Journal of Applied Physics,2009,105(4):1-4. [86] NOURAEI H,KOWSARI K,SPELT J K,et al. Surface evolution models for abrasive slurry jet micro-machining of channels and holes in glass[J]. Wear,2014,309(1-2):65-73. [87] NGUYEN T,PANG Kinglun,WANG Jun. A preliminary study of the erosion process in micro-machining on glasses with a low pressure slurry jet[J]. Key Engineering Materials,2009,389:375-380. [88] HAGHBIN N,SPELT J K,PAPINI M. Abrasive water jet micromachining of channels in metals:Comparison between machining in air and submerged in water[J]. International Journal of Machine Tools and Manufacture,2015,88:108-117. [89] TSAI F C,CHANG Tingcheng,KUO Miaoyu,et al. The investigation of abrasive jet polishing on the linear micro- channels surface of SKD61 mold steel[J]. Advanced Materials Research,2013,652-654:1799-1804. [90] LIU Zengwen,HUANG Chuanzhen,WANG Jun,et al. Study on machining system of precision micro abrasive water jet and polish experiment[J]. Key Engineering Materials,2010,431/432:102-105. [91] SIORES E,WONG W C K,CHEN L,et al. Enhancing abrasive waterjet cutting of ceramics by head oscillation techniques[J]. CIRP Annals-Manufacturing Technology,1996,45(1):327-330. [92] LEMMA E,CHEN L,SIORES E,et al. Optimising the AWJ cutting process of ductile materials using nozzle oscillation technique[J]. International Journal of Machine Tools and Manufacture,2002,42(7):781-789. [93] LEMMA E,CHEN L,SIORES E,et al. Study of cutting fiber-reinforced composites by using abrasive waterjet with cutting head oscillation[J]. Composite Structures,2002,57(1-4):297-303. [94] HASHISH M. Effect of beam angle in abrasive waterjet machining[J]. Journal of Manufacturing Science and Engineering,1993,115(1):51-56. [95] LIU Zhuang,NOURAEI H,PAPINI M,et al. Abrasive enhanced electrochemical slurry jet micro-machining:Comparative experiments and synergistic effects[J]. Journal of Materials Processing Technology,2014,214(9):1886-1894. [96] LIU Zhuang,NOURAEI H,SPELT J K,et al. Electrochemical slurry jet micro-machining of tungsten carbide with a sodium chloride solution[J]. Precision Engineering,2015,40:189-198. [97] 代海. 磨料电化学射流加工过程数值模拟及实验研究[D]. 哈尔滨:哈尔滨工业大学,2013. DAI Hai. Numerical simulation and experimental study of the electrochemical abrasive jet processing process[D]. Harbin:Harbin Institute of Technology,2013. [98] ZHU Hongtao,HUANG Chuanzhen,WANG Jun,et al. Theoretical analysis on the machining mechanism in ultrasonic vibration abrasive waterjet[J]. Key Engineering Materials,2006,315-316:127-130. [99] LV Zhe,HUANG Chuanzhen,ZHU Hongtao,et al. A 3D simulation of the fluid field at the jet impinging zone in ultrasonic-assisted abrasive waterjet polishing[J]. International Journal of Advanced Manufacturing Technology,2016,87(9-12):1-13. [100] LV Zhe,HUANG Chuanzhen,ZHU Hongtao,et al. A research on ultrasonic-assisted abrasive waterjet polishing of hard-brittle materials[J]. International Journal of Advanced Manufacturing Technology,2015,78(5-8):1361-1369. [101] QI Huan,WEN Donghua,LU Congda,et al. Numerical and experimental study on ultrasonic vibration-assisted micro-channeling of glasses using an abrasive slurry jet[J]. International Journal of Mechanical Sciences,2016,110:94-10. [102] 张忠伟. 超声振动辅助微细磨料水射流切割技术研究[D]. 济南:山东大学,2014. ZHANG Zhongwei. Research on ultrasonic vibration assisted water jet cutting technology of fine abrasive[D]. Jinan:Shandong University,2014. [103] FOLDYNA J,SITEK L,ŠVEHLA B,et al. Utilization of ultrasound to enhance high-speed water jet effects[J]. Ultrasonics sonochemistry,2004,11(3-4):131-137. [104] BEAUCAMP A,KATSUURA T,TAKATA K. Process mechanism in ultrasonic cavitation assisted fluid jet polishing[J]. CIRP Annals-Manufacturing Technology,2018,67(1):361-364. [105] 侯荣国. 超声振动辅助磨料水射流脉动行为及其对加工机理影响机制研究[D]. 济南:山东大学,2015. HOU Rongguo. Study on the pulsation behavior of water jet and its influence mechanism on processing mechanism[D]. Jinan:Shandong University,2015. [106] 陈雪松,侯荣国,吕哲,等. 超声辅助磨料水射流加工机制及去除模型研究[J]. 机床与液压,2020,48(17):79-82. CHEN Xuesong,HOU Rongguo,LÜ Zhe,et al. Study on processing mechanism and removal model of abrasive abrasives[J]. Machine Tool and Hydraulic Pressure,2020,48(17):79-82. [107] 侯荣国,杨欢,蒋振伟,等. 磁场辅助微细磨料水射流加工系统的研制[J]. 机床与液压,2017,45(7):77-80. HOU Rongguo,YANG Huan,JIANG Zhenwei,et al. Development of magnetic field assisted fine abrasive waterjet machining system[J]. Machine Tool and Hydraulics,2017,45(7):77-80. [108] 王涛. 磁场辅助磨料水射流冲蚀硬脆材料去除机理研究[D]. 淄博:山东理工大学,2019. WANG Tao. Study on the removal mechanism of hard and brittle materials by magnetic field-assisted water jet erosion of abrasives[D]. Zibo:Shandong University of Technology,2019. [109] 杨欢. 磁场辅助微细磨料水射流拋光陶瓷材料关键技术研究[D]. 淄博:山东理工大学,2018. YANG Huan. Research on key technologies of magnetic field-assisted microabrasive waterjet optical ceramic materials[D]. Zibo:Shandong University of Technology,2018. [110] 李晓红,王建生,卢义玉,等. 脉冲磨料射流的基本理论与试验[J]. 中国安全科学学报,1999,9(z1):82-82. LI Xiaohong,WANG Jiansheng,LU Yiyu,et al. Basic theory and test of pulsed abrasive jet[J]. China Safety Science Journal,1999,9(z1):82-82. [111] 廖勇,李晓红,卢义玉,等. 自激振荡脉冲磨料水射流的研究[J]. 流体机械,2003,31(4):4-6. LIAO Yong,LI Xiaohong,LU Yiyu,et al. Study on self-excited oscillating pulsed abrasive water jet[J]. Fluid Machinery,2003,31(4):4-6. [112] 王晖. 自振脉冲磨料水射流安全切割实验及应用研究[D]. 北京:中国矿业大学,2012. WANG Hui. Experimental and application research on safe cutting of natural pulse abrasive water jet[D]. Beijing:China University of Mining and Technology,2012. [113] 徐凯. 淹没式自激振脉冲磨料水射流脉冲特性及切割试验研究[D]. 大连:大连海事大学,2015. XU Kai. Pulse characteristics and cutting test of submerged self-excited pulse abrasive water jet[D]. Dalian:Dalian Maritime University,2015. [114] 邓乾发,汪杨笑,吕冰海,等. 自激脉冲特性磨料水射流浸没式抛光数值分析与有效性实验验证[J]. 表面技术,2022,51(1):161-173. DENG Qianfa,WANG Yangxiao,LV Binghai,et al. Numerical analysis and experimental verification of self-excited pulse characteristics of abrasive waterjet immersion polishing[J]. Surface Technology,2022,51(1):161-173. [115] 安祥瑞. 空化磨料水射流切割装置的设计与研究[C]//第八届中国国际救捞论坛论文集.上海:上海浦江教育出版社,2014:377-379. AN Xiangrui. Design and research of cavitation abrasive waterjet cutting device[C]//Proceedings of the 8th China International Salvage Forum. Shanghai:Shanghai Pujiang Education Publishing House,2014:377-379. [116] MADADNIA J,SHANMUGAM D K,NGUYEN T,WANG Jun. A study of cavitation induced surface erosion in abrasive waterjet cutting systems[J]. Advanced Materials Research,2008,53-54:357-362. [117] OHASHI K,WANG R,HASEGAWA H,et al. Fundamental study on the precision abrasive machining using a cavitation in reversing suction flow[J]. Key Engineering Materials,2009,389-390:223-228. [118] 唐宇. 负压空化磨料水射流抛光机理与实验研究[D]. 长沙:湖南大学,2017. TANG Yu. Mechanism and experimental study of waterjet polishing of negative pressure cavitation abrasive[D]. Changsha:Hunan University,2017. [119] WANG Jun,ZHONG Y. Enhancing the depth of cut in abrasive waterjet cutting of alumina ceramics by using multipass cutting with nozzle oscillation[J]. Machining Science and Technology,2009,13(1):76-91. [120] WANG Jun,XU Shunli. Enhancing the AWJ cutting performance by multipass machining with controlled nozzle oscillation[J]. Key Engineering Materials,2005,291-292:453-458. [121] WANG Jun. Depth of cut models for multipass abrasive waterjet cutting of alumina ceramics with nozzle oscillation[J]. Frontiers of Mechanical Engineering in China,2010,5(1):19-32. [122] NATARAJAN Y,MURUGASEN P K,SUNDARAJAN L R,et al. Experimental investigation on cryogenic assisted abrasive water jet machining of aluminium alloy[J]. International Journal Precision Engineering Manufacturing-Green Technology,2019,6(3):415-432. [123] JERMAN M,ORBANIC H,JUNKAR M,et al. Thermal aspects of ice abrasive water jet technology[J]. Advances in Mechanical Engineering,2015,7(8):1-9. [124] VALENTINI J,LEBAR A,SABOTIN I,et al. Development of ice abrasive waterjet cutting technology[J]. Journal of Achievements of Materials and Manufacturing Engineering,2017,81(2):76-84. [125] TANGWARODOMNUKUN V,WANG Jun,HUANG Chuanzhen,et al. An investigation of hybrid laser- waterjet ablation of silicon substrates[J]. International Journal of Machine Tools and Manufacture,2012,56:39-49. [126] ZHU Hao,WANG Jun,YAO Peng,et al. Heat transfer and material ablation in hybrid laser-waterjet microgrooving of single crystalline germanium[J]. International Journal of Machine Tools and Manufacture,2017,116:25-39. [127] WANG Liang,HUANG Chuanzhen,WANG Jun,et al. An experimental investigation on laser assisted waterjet micro-milling of silicon nitride ceramics[J]. Ceramics International,2018,44(5):5636-5645. [128] YANAIDA K,OHASHI A. Flow characteristics of water jets[C]//Proceedings of the Second International Symposium on Jet Cutting Technology,Cambridge,UK. Cranfield:BHRA Fluid Engineering,1974:20-32. [129] LIU Hua. A study of the cutting performance in abrasive waterjet contouring of alumina ceramics and associated jet dynamic characteristics[D]. Brisbane:Queensland University of Technology,2004. [130] HOU Rongguo,HUANG Chuanzhen,ZHU Hongtao,et al. The measurement of the velocity outside the high pressure water jet and abrasive water jet nozzle based on the energy transfer method[J]. Advanced Materials Research,2010,135:361-364. [131] ISOBE T. Distribution of abrasive particles in abrasive water jet and acceleration mechanism[C]//Proceedings of the 9th International Symposium on Jet Cutting Technology. Milton Keynes:BHRA,1988:155-164. [132] SWANSON R K. Study of particle velocities in water driven abrasive jet cutting[C]//Proceedings of the 4th US Water Jet Conference,Berkeley. 1987:103-107. [133] SIMPSON M. Abrasive particle study in high pressure water jet cutting[J]. Internatinoal Journal of Water Jet Technology,1990,1:17-28. [134] HIMMELREICH U,RIESS W. Hydrodynamic investigations on abrasive-waterjet cutting tools[C]//Proceedings of the 10th International Conference on Jet Cutting Technology. Amsterdam:Elsevier Applied Science,1991:3-22. [135] CHEN W,GESKIN E. Measurement of the velocity of abrasive water jet by the use of laser transit anemometer[C]//the 10th International Symposium on Jet Cutting Technology. Amsterdam:Elsevier Applied Science,1990:23-36. [136] ANNONI M. Water jet velocity uncertainty in laser Doppler velocimetry measurements[J]. Measurement,2012,45(6):1639-1650. [137] BALZ R,MOKSO R,NARAYANAN C,et al. Ultra-fast X-ray particle velocimetry measurements within an abrasive water jet[J]. Experiments in fluids,2013,54(3):1-13. [138] BALZ R,HEINIGER K C. Determination of spatial velocity distributions of abrasive particles in abrasive water jets using laser-induced fluorescence under real conditions[C]//Proceedings of 16th WJTA-IMCA Conference and Expo. Switzerland:University of Applied Sciences Northwestern Switzerland,2012:90-99. [139] THONGKAEW K,WANG Jun. An experimental study of the particle velocities in abrasive waterjets[J]. International Journal of Abrasive Technology,2017,8(2):147-156. [140] ZELENAK M,FOLDYNA J,LINDE M. Measurement and analysis of abrasive particles velocities in AWSJ[J]. Procedia Engineering,2016,149:77-86. [141] THONGKAEW K. A study of the abrasive waterjet hole machining processes on woven cfrps and the jet impact characteristics[D]. Sydney:The University of NSW South Wales,2018. [142] LIU Hua,WANG Jun,KELSON N,et al. A study of abrasive waterjet characteristics by CFD simulation[J]. Journal of Materials Processing Technology,2004,153/154:488-493. [143] WANG Jun. Particle velocity models for ultra-high pressure abrasive waterjets[J]. Journal of Materials Processing Technology,2009,209(9):4573-4577. [144] CAO Liping,LIU Shi,HUANG Yaosong,et al. Study of high pressure waterjet characteristics based on CFD simulation[J]. Applied Mechanics and Materials,2012,224:307-311. [145] ZHANG Shangxian,LIU Yuan,WANG Quan. Track calculation and numerical simulation on particles in high pressure abrasive water jet nozzle[C]//International Conference on Measuring Technology and Mechatronics Automation,Zhongshan,China. Piscataway:IEEE Computer Society,2010:3293-3296. [146] THONGKAEW K,WANG Jun,YEOH G H. Impact characteristics and stagnation formation on a solid surface by a supersonic abrasive waterjet[J]. International Journal of Extreme Manufacturing,2019,1(4):43-61. [147] BOWDEN F P,FIELD J E. The brittle fracture of solids by liquid impact,by solid impact,and by shock[J]. Proceedings of the Royal Society of London. Series A,Mathematical and Physical Sciences,1964:331-352. [148] FIELD J E. Stress waves,deformation and fracture caused by liquid impact[J]. Philosophical Transactions for the Royal Society of London. Series A,Mathematical and Physical Sciences,1966:86-93. [149] HEYMANN F J. High-speed impact between a liquid drop and a solid surface[J]. Journal of Applied Physics,1969,40(13):5113-5122. [150] SCHWARTZENTRUBER J,SPELT J K,PAPINI M. Modelling of delamination due to hydraulic shock when piercing anisotropic carbon-fiber laminates using an abrasive waterjet[J]. International Journal of Machine Tools and Manufacture,2018,132:81-95. [151] GU Yiwen,NGUYEN T,DONOUGH M J,et al. Mechanisms of pop-up delamination in laminated composites pierced by the initial pure waterjet in abrasive waterjet machining[J]. Composite Structures,2022,297:115968.1-115968.15. [152] HSU C Y,LIANG C C,TENG T L,et al. A numerical study on high-speed water jet impact[J]. Ocean Engineering,2013,72(1):98-106. [153] COOK S S. Erosion by water-hammer[J]. Proceedings of the Royal Society of London. Series A,Containing Papers of a Mathematical and Physical Character,1928,119 (783):481-488. [154] BOURNE N K. On impacting liquid jets and drops onto polymethylmethacrylate targets[J]. Proceedings of the Royal Society. Mathematical,physical and engineering sciences,2005,461(2056):1129-1145 [155] NOURAEI H,KOWSARI K,SAMAREH B,et al. Calibrated CFD erosion modeling of abrasive slurry jet micro-machining of channels in ductile materials[J]. Journal of Manufacturing Processes,2016,23(8):90-101. [156] KOWSARI K,NOURAEI H,SAMAREH B,et al. CFD-aided prediction of the shape of abrasive slurry jet micro-machined channels in sintered ceramics[J]. Ceramics International,2016,42(6):7030-7042. [157] BITTER J G A. A study of erosion phenomena part Ⅰ[J]. Wear,1963,6(1):5-21. [158] BITTER J G A. A study of erosion phenomena part II[J]. Wear,1963,6(3):169-190. [159] TILLY G P. A two stage mechanism of ductile erosion[J]. Wear,1973,23(1):87-96. [160] FINNIE I. Erosion of surfaces by solid particles[J]. Wear,1960,3(2):87-103. [161] FINNIE I,MCFADDEN D H. On the velocity dependence of the erosion of ductile metals by solid particles at low angles of incidence[J]. Wear,1978,48(1):181-190. [162] HUTCHINGS I M,WINTER R E,FIELD J E. Solid particle erosion of metals:The removal of surface material by spherical projectiles[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Science,1976,348(1654):379-392. [163] HUTCHINGS I M. Deformation of metal surfaces by the oblique impact of square plates[J]. International Journal of Mechanical Sciences,1977,19(1):45-52. [164] JUNKAR M,JURISEVIC B,FAJDIGA M,et al. Finite element analysis of single particle impact in abrasive water jet machining[J]. International Journal of Impact Engineering,2006,32(7):1095-1112. [165] ELTOBGY M S,NG E,ELBESTAWI M A. Finite element modeling of erosive wear[J]. International Journal of Machine Tools and Manufacture,2005,45(11):1337-1346. [166] TAKAFFOLI M,PAPINI M. Finite element analysis of single impacts of angular particles on ductile targets[J]. Wear,2009,267(1):144-151. [167] TAKAFFOLI M,PAPINI M. Numerical simulation of solid particle impacts on Al6061-T6 part I:Three-dimensional representation of angular particles[J]. Wear,2012,292/293:100-110. [168] TAKAFFOLI M,PAPINI M. Numerical simulation of solid particle impacts on Al6061-T6 Part II:Materials removal mechanisms for impact of multiple angular particles[J]. Wear,2012,296(1):648-655. [169] ANWAR S,AXINTE D A,BECKER A A. Finite element modelling of abrasive waterjet milled footprints[J]. Journal of Materials Processing Technology,2013,213(2):180-193. |
[1] | CUI Xianxian, DU Hanheng, CHEN Huawei. Review on Biomimetic Micro/nanostructured Surfaces and Their Manufacturing Techniques for Drag Reduction [J]. Journal of Mechanical Engineering, 2025, 61(9): 1-22. |
[2] | ZHAO Yijin, YANG Xiaodong, DUAN Xiaoming. High Quality and Efficient Micro-hole Machining of CFRP by EDM Using a Spiral Electrode [J]. Journal of Mechanical Engineering, 2025, 61(7): 220-228. |
[3] | ZHOU Yunguang, CHEN Han, ZOU Ji, MA Wenmin, MA Lianjie, LI Ming, YIN Guoqiang, GONG Yadong. Study on Ultrasonic Elliptical Vibration Assisted Helical Grinding Kinematic Model and Material Removal Mechanism of 2.5D-Cf/SiC Composites [J]. Journal of Mechanical Engineering, 2025, 61(7): 229-244. |
[4] | SHI Wentian, YANG Yilin, LI Jie, LI Jian, XIE Chuan, MA Tong. Experimental Study on Milling and Grinding Composite Machining of Aramid Fiber Reinforced Polymer Based on MQL [J]. Journal of Mechanical Engineering, 2025, 61(7): 259-268. |
[5] | GE Jia, FU Guoyu, ZOU Yunhe, LUO Ming. A Review of Non-conventional Machining of Carbon Fibre Reinforced Plastic Composite [J]. Journal of Mechanical Engineering, 2025, 61(7): 77-97. |
[6] | CHENG Yinghao, LIU Changqing, ZHUANG Qiyang, LI Guangxu, HAO Xiaozhong. Sensorless Cutting Force Monitoring Based on Recurrent Neural Network [J]. Journal of Mechanical Engineering, 2025, 61(6): 14-23. |
[7] | QI Ruolong, WANG Jie, LI Lun, ZHAO Jibin. Research on Semi-active Suppression of Flutter in Robotic Grinding for Aero-engine Blades [J]. Journal of Mechanical Engineering, 2025, 61(5): 228-238. |
[8] | LI Renze, SHI Xiujiang, LU Xiqun, SUN Wen, LIU He. Study on Mixed Lubrication Characteristics of Helical Gears of Marine Diesel Engine under Real Machining Surface [J]. Journal of Mechanical Engineering, 2025, 61(1): 290-304. |
[9] | RONG Qin, CHEN Yuanyuan, HUANG Dazhong, ZHU Yongwei. Study and Experiment on Mechanism of Rotary Ultrasonic Combined Multi-energy Field Machining [J]. Journal of Mechanical Engineering, 2025, 61(1): 335-344. |
[10] | CHEN Yangjian, YI Jun, WANG Zongwei, CHEN Bing, DENG Hui. Multi-physical Field Coupling Simulation and Experimental Research on Electrolyte Plasma Polishing [J]. Journal of Mechanical Engineering, 2025, 61(1): 360-370. |
[11] | DONG Zhigang, WANG Zhongwang, RAN Yichuan, BAO Yan, KANG Renke. Advances in Ultrasonic Vibration-assisted Milling of Carbon Fiber Reinforced Ceramic Matrix Composites [J]. Journal of Mechanical Engineering, 2024, 60(9): 26-56. |
[12] | WU Shujing, WANG Dazhong, GU Guquan, HUANG Shuai, DONG Guojun, GUO guoqiang, AN Qinglong, LI Changhe. High-performance Machining of Complex Curved Surfaces in Multi-energy Fields: Key Technologies and Advancements [J]. Journal of Mechanical Engineering, 2024, 60(9): 152-167. |
[13] | WEN Qiuling, YANG Ye, HUANG Hui, HUANG Guoqin, HU Zhongwei, CHEN Jinhong, WANG Hui, WU Xian. Review of Research Progress in Laser-based Hybrid Machining of Hard and Brittle Materials [J]. Journal of Mechanical Engineering, 2024, 60(9): 168-188. |
[14] | LI Jicheng, CHEN Guangjun, XU Jinkai, YU Huadong. Study on Material Damage Mechanism and Surface Quality of C/SiC Composites by Laser-ultrasonic Hybrid Micromachining [J]. Journal of Mechanical Engineering, 2024, 60(9): 189-205. |
[15] | LI Han, ZHANG Cheng, CHEN Jie, AN Qinglong, CHEN Ming. Material Removal Mechanism and Evaluation of Machined Surface Quality of SiCf/SiC Composites by Laser Ablation-assisted Milling [J]. Journal of Mechanical Engineering, 2024, 60(9): 206-217. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||