[1] FEIGIN V L, STARK B A, JOHNSON C O, et al. Global, regional, and national burden of stroke and its risk factors, 1990-2019:a systematic analysis for the Global Burden of Disease Study 2019[J]. The Lancet Neurology, 2021, 20:795-820. [2] XIE Y, XU E, BOWE B, et al. Long-term cardiovascular outcomes of COVID-19[J]. Nat. Med., 2022, 28(3):583-590. [3] BONATTI J, VETROVEC G, RIGA C, et al. Robotic technology in cardiovascular medicine[J]. Nature Reviews Cardiology, 2014, 11(5):266-275. [4] ZHAO Y, GUO S, WANG Y, et al. A CNN-based prototype method of unstructured surgical state perception and navigation for an endovascular surgery robot[J]. Med. Biol. Eng. Comput., 2019, 57(9):1875-1887. [5] ZHAO Y, XING H, GUO S, et al. A novel noncontact detection method of surgeon's operation for a master-slave endovascular surgery robot[J]. Med. Biol. Eng. Comput., 2020, 58(4):871-885. [6] ZHAO Y, WANG Y, ZHANG J, et al. Surgical GAN:Towards real-time path planning for passive flexible tools in endovascular surgeries[J]. Neurocomputing, 2022, 500:567-580. [7] ZHAO Y, GUO S, XIAO N, et al. Operating force information on-line acquisition of a novel slave manipulator for vascular interventional surgery[J]. Biomed Microdevices, 2018, 20:1-13. [8] BEAMAN C, SABER H, TATESHIMA S. A technical guide to robotic catheter angiography with the Corindus CorPath GRX system[J]. J. NeuroInterventional Surg., 2022, 14(12):1284. [9] CRINNION W, JACKSON B, SOOD A, et al. Robotics in neurointerventional surgery:a systematic review of the literature[J]. J. NeuroInterventional Surg., 2022, 14(6):539-545. [10] NOGUEIRA R G, SACHDEVA R, AL-BAYATI A R, et al. Robotic assisted carotid artery stenting for the treatment of symptomatic carotid disease:technical feasibility and preliminary results[J]. J. NeuroInterventional Surg., 2020, 12(4):341-344. [11] PATEL T M, SHAH S C, PANCHOLY S B. Long distance tele-robotic-assisted percutaneous coronary intervention:a report of first-in-human experience[J]. EClinicalMedicine, 2019, 14:53-58. [12] PEREIRA V M, CANCELLIERE N M, NICHOLSON P, et al. First-in-human, robotic-assisted neuroendovascular intervention[J]. J. NeuroInterventional Surg., 2020, 12:338-340. [13] SAJJA K C, SWEID A, AL SAIEGH F, et al. Endovascular robotic:feasibility and proof of principle for diagnostic cerebral angiography and carotid artery stenting[J]. J. NeuroInterventional Surg., 2020, 12(4):345-349. [14] SWAMINATHAN R V, RAO S V. Robotic-assisted transradial diagnostic coronary angiography[J]. Catheter Cardiovasc Interv, 2018, 92(1):54-57. [15] ZHAO H, LIU Q, ZHOU X, et al. Design and performance evaluation of a novel vascular robotic system for complex percutaneous coronary interventions[C]//2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2021:4679-4682. [16] SANKARAN N K, CHEMBRAMMEL P, KESAVADAS T. Force calibration for an endovascular robotic system with proximal force measurement[J]. Int. J. Med. Robot. Comput. Assist. Surg., 2020, 16(2):e2045. [17] SANKARAN N K, CHEMBRAMMEL P, SIDDIQUI A, et al. Design and development of surgeon augmented endovascular robotic system[J]. IEEE Trans. Biomed. Eng., 2018, 65(11):2471-2481. [18] CHAUTEMS C, TONAZZINI A, BOEHLER Q, et al. Magnetic continuum device with variable stiffness for minimally invasive surgery[J]. Adv. Intell. Syst., 2019(1):1. [19] CHAUTEMS C, LYTTLE S, BOEHLER Q, et al. Design and evaluation of a steerable magnetic sheath for cardiac ablations[J]. IEEE Robotics and Automation Letters, 2018, 3(3):2123-2128. [20] GU H, BERTRAND T, BOEHLER Q, et al. Magnetically active cardiac patches as an untethered, non-blood contacting ventricular assist device[J]. Adv. Sci., 2020, 8(1):2000726. [21] NELSON C C A B J. The tethered magnet:Force and 5-DOF pose control for cardiac ablation[C]//2017 IEEE international conference on robotics and automation (ICRA). IEEE, 2017:4837-4842. [22] YEGOR P J S, CHRISTOPHE C, JONAS L, et al. A variable stiffness magnetic catheter made of a conductive phase-change polymer for minimally invasive surgery[J]. Advanced Functional Materials, 2022, 32(20):2107662. [23] BAO X, GUO S, GUO Y, et al. Multilevel operation strategy of a vascular interventional robot system for surgical safety in teleoperation[J]. IEEE Transactions on Robotics, 2022, 38(4):2238-2250. [24] BAO X, GUO S, SHI L, et al. Design and evaluation of sensorized robot for minimally vascular interventional surgery[J]. Microsystem Technologies, 2019, 25(7):2759-2766. [25] WANG K, LU Q, CHEN B, et al. Endovascular intervention robot with multi-manipulators for surgical procedures:dexterity, adaptability, and practicability[J]. Robotics and Computer-Integrated Manufacturing, 2019, 56:75-84. [26] LU Q, SHEN Y, XIA S, et al. A novel universal endovascular robot for peripheral arterial stent-assisted angioplasty:initial experimental results[J]. Vasc. Endovasc. Surg., 2020, 54(7):598-604. [27] WANG K, LIU J, YAN W, et al. Force feedback controls of multi-gripper robotic endovascular intervention:design, prototype, and experiments[J]. Int. J. Comput. Assist. Radiol. Surg., 2021, 16(1):179-192. [28] WANG K, MAI X, XU H, et al. A novel SEA-based haptic force feedback master hand controller for robotic endovascular intervention system[J]. Int. J. Med. Robot. Comput. Assist. Surg., 2020, 16(5):1-10. [29] SONG C, XIA S, ZHANG H, et al. Novel endovascular interventional surgical robotic system based on biomimetic manipulation[J]. Micromachines, 2022, 13(10):1587. [30] ZHAI G Y, CHEN Z, LIU R F, et al. First-in-human evaluation of an independently developed Chinese robot-assisted system for percutaneous coronary intervention[J]. J. Geriatr. Cardiol., 2022, 19(10):743-752. [31] HEDYEH R C J P, CELIA R, COLIN B, et al. Assessment of navigation cues with proximal force sensing during endovascular catheterization[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2012:15th International Conference, 2012:560-567. [32] WEINBERG J H, SWEID A, SAJJA K, et al. Comparison of robotic-assisted carotid stenting and manual carotid stenting through the transradial approach[J]. Journal of Neurosurgery, 2020, 135(1):21-28. [33] GREENWOOD J A W J B P. Contact of nominally flat surfaces[J]. Mathematical and Physical Sciences, 1966, 295(1442):300-319. [34] CHANG W R, ETSION I, BOGY D B. An elastic-plastic model for the contact of rough surfaces[J]. Journal of Tribology, 1987, 109(2):257-263. [35] CHANG Y Z D M M L. An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow[J]. Journal of Tribology, 2000, 122(1):86-91. [36] ETSION L K I. A static friction model for elastic-plastic contacting rough surfaces[J]. Journal of Tribology, 2004, 126(1):34-40. [37] WANG W, WAN Z, WU B, et al. Finite element analysis for mechanics of guiding catheters in transfemoral intervention[J]. Journal of Cardiac Surgery, 2019, 34(8):1-10. [38] BAO X, GUO S, XIAO N, et al. A cooperation of catheters and guidewires-based novel remote-controlled vascular interventional robot[J]. Biomed Microdevices, 2018, 20(1):1-19. [39] OMISORE O M, HAN S P, REN L X, et al. Towards characterization and adaptive compensation of backlash in a novel robotic catheter system for cardiovascular interventions[J]. IEEE Trans. Biomed. Circuits Syst., 2018, 12(4):824-838. [40] YU H, WANG H, CHANG J, et al. Design and evaluation of vascular interventional robot system for complex coronary artery lesions[J]. Med. Biol. Eng. Comput., 2023(1):1-16 |