A Motor Bearing Cage Fault Diagnosis Method Based on Local Maximum of Kurtosis Surface
LIU Yilong1, LI Xinyuan1, CHEN Yinping2, CHENG Wei1, CHEN Xuefeng1
1. National and Local Joint Engineering Research Center of Equipment Operation Safety and Intelligent Monitoring, Xi’an Jiaotong University, Xi’an 710049; 2. China Nuclear Power Engineering Co., Ltd., Beijing 100840
LIU Yilong, LI Xinyuan, CHEN Yinping, CHENG Wei, CHEN Xuefeng. A Motor Bearing Cage Fault Diagnosis Method Based on Local Maximum of Kurtosis Surface[J]. Journal of Mechanical Engineering, 2024, 60(15): 89-99.
[1] 孟宗,关阳,潘作舟,等.基于二次数据增强和深度卷积的滚动轴承故障诊断研究[J].机械工程学报,2021,57(23):106-115.MENG Zong,GUAN Yang,PAN Zuozhou,et al.Fault diagnosis of rolling bearing based on secondary data enhancement and deep convolutional network[J].Journal of Mechanical Engineering,2021,57(23):106-115. [2] 李华,刘韬,伍星,等.相关奇异值比的SVD在轴承故障诊断中的应用[J].机械工程学报,2021,57(21):138-149.LI Hua,LIU Tao,WU Xing,et al.Application of SVD based on correlated singular value ratio in bearing fault diagnosis[J].Journal of Mechanical Engineering,2021,57(21):138-149. [3] CHEN Xuefeng,MA Meng,ZHAO Zhibin,et al.Physics-informed deep neural network for bearing prognosis with multi-sensory signals[J].Journal of Dynamics,Monitoring and Diagnostics,2022:200-207. [4] CHENG Yao,ZHOU Ning,ZHANG Weihua,et al.Application of an improved minimum entropy deconvolution method for railway rolling element bearing fault diagnosis[J].Journal of Sound and Vibration,2018,425:53-69. [5] MCDONALD G L,ZHAO Q.Multipoint optimal minimum entropy deconvolution and convolution fix:Application to vibration fault detection[J].Mechanical Systems and Signal Processing,2017,82:461-477. [6] PRABHAKAR S,MOHANTY A R,SEKHAR A S.Application of discrete wavelet transform for detection of ball bearing race faults[J].Tribology International,2002,35(12):793-800. [7] BOUDIAF A,MOUSSAOUI A,DAHANE A,et al.A comparative study of various methods of bearing faults diagnosis using the case western reserve university data[J].Journal of Failure Analysis and Prevention,2016,16(2):271-284. [8] 樊薇,李双,蔡改改,等.基于小波基稀疏信号特征提取的轴承故障诊断[J].振动工程学报,2015,28(6):972-980.FAN Wei,LI Shuang,CAI Gaigai,et al.Wavelet sparse signal feature extraction method and its application in bearing fault diagnosis[J].Journal of Vibration Engineering,2015,28(6):972-980. [9] LEI Yaguo,LIN Jing,HE Zhengjia,et al.Application of an improved kurtogram method for fault diagnosis of rolling element bearings[J].Mechanical Systems and Signal Processing,2011,25(5):1738-1749. [10] JIANG Fan,ZHU Zhencai,LI Wei.An improved VMD with empirical mode decomposition and its application in incipient fault detection of rolling bearing[J].IEEE Access,2018,6:44483-44493. [11] 黄贵发,王定晓,唐德尧.用于城市轨道交通车辆走行部故障的车载在线实时诊断与监测系统[J].城市轨道交通研究,2015,18(9):31-36. HUANG Guifa,WANG Dingxiao,TANG Deyao.Online real-time fault diagnosis and monitoring system for urban rail transit vehicle bogie[J].Urban Mass Transit,2015,18(9):31-36. [12] 薛政坤,汪曦,于晓光,等.基于优化VMD的齿轮箱轴承保持架故障特征提取[J].组合机床与自动化加工技术,2021(7):77-81. XUE Zhengkun,WANG Xi,YU Xiaoguang,et al.Fault feature extraction of gearbox bearing retainer based on improved VMD[J].Modular Machine Tool&Automatic Manufacturing Technique,2021(7):77-81. [13] 汤芳,刘义伦,龙慧,等.基于改进小波包系数熵的保持架损伤程度识别[J].计算机仿真,2018,35(2):360-365.TANG Fang,LIU Yilun,LONG Hui,et al.Recognition of different damage degree of cage based on improved wavelet packet coefficient entropy[J].Computer Simulation,2018,35(2):360-365. [14] WEI Sha,WANG Dong,WANG Hong,et al.Time-varying envelope filtering for exhibiting space bearing cage fault features[J].IEEE Transactions on Instrumentation and Measurement,2021,70:1-13. [15] WANG D,TSE P W,TSUI K L.An enhanced kurtogram method for fault diagnosis of rolling element bearings[J].Mechanical Systems and Signal Processing,2013,35(1): 176-199. [16] ANTONI J.Fast computation of the kurtogram for the detection of transient faults[J].Mechanical Systems and Signal Processing,2007,21(1):108-124. [17] DRAGOMIRETSKIY K,ZOSSO D.Variational mode decomposition[J].IEEE Transactions on Signal Processing,2014,62(3):531-544.