Journal of Mechanical Engineering ›› 2024, Vol. 60 ›› Issue (9): 168-188.doi: 10.3901/JME.2024.09.168
Previous Articles Next Articles
WEN Qiuling1,2, YANG Ye1,2, HUANG Hui1,2, HUANG Guoqin1,2, HU Zhongwei1,2, CHEN Jinhong1,2, WANG Hui1,2, WU Xian2,3
Received:
2023-08-03
Revised:
2023-12-14
Online:
2024-05-05
Published:
2024-06-18
CLC Number:
WEN Qiuling, YANG Ye, HUANG Hui, HUANG Guoqin, HU Zhongwei, CHEN Jinhong, WANG Hui, WU Xian. Review of Research Progress in Laser-based Hybrid Machining of Hard and Brittle Materials[J]. Journal of Mechanical Engineering, 2024, 60(9): 168-188.
[1] MU X,WU S,CHENG L,et al. Edge couplers in silicon photonic integrated circuits:A review[J]. Applied Sciences,2020,10(4):1538. [2] ANDREANI L C,BOZZOLA A,KOWALCZEWSKI P,et al. Silicon solar cells:Toward the efficiency limits[J]. Advances in Physics:X,2019,4(1):1548305. [3] LIU C Y,YEH C Y,LAI W H,et al. Wet-etching mechanism of a semi-sphere pattern on sapphire substrate[J]. Materials Chemistry and Physics,2022,281:125863. [4] VIKULIN V V,KELINA I Y,SHASTALIN A S,et al. Advanced ceramic structural materials[J]. Refractories and Industrial Ceramics,2004,45(6):383-386. [5] PAPEŽ N,DALLAEVR,ŢĂLU Ş,et al. Overview of the current state of gallium arsenide-based solar cells[J]. Materials,2021,14(11):3075. [6] DALLA VECCHIA M,RACYTS S,VAN D B G,et al. Gallium-nitride semiconductor technology and its practical design challenges in power electronics applications:An overview[J]. Energies,2019,12(14):2663. [7] CASADY J B,JOHNSON R W. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications:A review[J]. Solid-State Electronics,1996,39(10):1409-1422. [8] 李国鑫. 碳化硅功率器件的发展与数值建模[J]. 科技创新与应用,2021,11(13):67-68,71. LI Guoxin. Development and numerical modeling of silicon carbide power devices[J]. Technology Innovation and Application,2021,11(13):67-68,71. [9] 蔡蔚,孙东阳,周铭浩,等. 第三代宽禁带功率半导体及应用发展现状[J]. 科技导报,2021,39(14):42-55. CAI Wei,SUN Dongyang,ZHOU Minghao,et al. Development status of third-generation wide bandgap power semiconductors and their applications[J]. Science & Technology Review,2021,39(14):42-55. [10] 范镝. 碳化硅反射镜表面粗糙度的优化[J]. 激光与光电子学进展,2014,51(9):209-213. FAN Di. Optimization of SiC mirror surface roughness[J]. Laser & Optoelectronics Progress,2014,51(9):209-213. [11] WEBER J R,KOEHL W F,VARLEY J B,et al. Quantum computing with defects[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(19):8513-8518. [12] 毛雅梅,黑鸿君,高洁,等. 钎焊金刚石研究进展及其工具的应用[J]. 机械工程学报,2022,58(4):80-93. MAO Yamei,HEI Hongjun,GAO Jie,et al. Research progress of brazing diamond and application of tools[J]. Journal of Mechanical Engineering,2022,58(4):80-93. [13] MORTET V,WILLIAMS O A,HAENEN K. Diamond:A material for acoustic devices[J]. Physica Status Solidi,2008,205(5):1009-1020. [14] BOCANEGRA-BERNAL M H,MATOVIC B. Mechanical properties of silicon nitride-based ceramics and its use in structural applications at high temperatures[J]. Materials Science and Engineering A,2010,527(6):1314-1338. [15] KELMM H. Silicon nitride for high-temperature applications[J]. Journal of the American Ceramic Society,2010,93(6):1501-1522. [16] DUSZOVAÁ A,HALGAŠ R,BL’NDA M,et al. Nanoindentation of WC-Co hardmetals[J]. Journal of the European Ceramic Society,2013,33(12):2227-2232. [17] MHADHBI M,DRISS M. Titanium carbide:Synthesis,properties and applications[J]. Journal of Brilliant Engineering,2021,2:1-11. [18] ZHANG B,ZHENG X,TOKURA H,et al. Grinding induced damage in ceramics[J]. Journal of Materials Processing Technology,2003,132:353-364. [19] NISHINAGA O,KIKUCHI T,NATUSUI S,et al. Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing[J]. Scientific Reports,2013,3:1-6. [20] MAHDAVINEJAD R,TOLOUEI-RAD M,SHARFI-BIDGOLI H. Heat transfer analysis of the EDM process on silicon carbide[J]. International Journal of Numerical Methods for Heat and Fluid Flow,2005,15(5):483-502. [21] ZHAO Y,KUNIEDA M,ABE K. Study of EDM cutting of single crystal silicon carbide[J]. Precision Engineering,2014,38(1):92-99. [22] FÜRJES P,FEKETE Z,ILLES L,et al. Effects of the focused ion beam parameters on nanopore milling in solid state membranes[J]. Procedia Engineering,2012,47:684-687. [23] HU X,HUANG Z,ZHOU X,et al. Wearable large-scale perovskite solar-power source via nanocellular scaffold[J]. Advanced Materials,2017,29(42):1703236. [24] SRISUAI N,HORPRATHUM M,EIAMCHAI P,et al. Development of nanohole array patterned by laser interference lithography technique[J]. Key Engineering Materials,2016,675-676:41-44. [25] SRINIVASU D S,AXINTE D A,SHIPWAY P H,et al. Influence of kinematic operating parameters on kerf geometry in abrasive waterjet machining of silicon carbide ceramics[J]. International Journal of Machine Tools and Manufacture,2009,49(14):1077-1088. [26] LI M,MU D,HUANG S,et al. Ultrathin diamond blades for dicing single crystal SiC developed using a novel bonding method[J]. Journal of Manufacturing Processes,2022,84:88-99. [27] YIN L,VANCOILLE E,RAMESH K,et al. Surface characterization of 6H-SiC (0001) substrates in indentation and abrasive machining[J]. International Journal of Machine Tools and Manufacture,2004,44:607-615. [28] WANG Y,LI L,YANG S,et al. Optimization of machining parameters of SiC single crystal cut by diamond wire saw[J]. MATEC Web of Conferences,2018,232:03002. [29] 章平,陈国美,倪自丰,等. 基于光助芬顿反应的碳化硅化学机械抛光工艺优化[J]. 表面技术,2022,51(7):253-262. ZHANG Ping,CHEN Guomei,NI Zifeng,et al. Optimization of chemical mechanical polishing process of SiC based on photo-fenton reaction[J]. Surface Technology,2022,51(7):253-262. [30] MING W,CAO C,SHEN F,et al. Numerical and experimental study on WEDM of BN-AlN-TiB2 composite ceramics based on a fusion FEM model[J]. Journal of Manufacturing Processes,2022,76:138-154. [31] XU H H K,JAHANMIR S. Microfracture and material removal in scratching of alumina[J]. Journal of Materials Science,1995,30:2235-2247. [32] 张鹏程,温秋玲,姜峰,等. 纳米孔阵列加工技术研究进展[J]. 机械工程学报,2020,56(9):223-233. ZHANG Pengcheng,WEN Qiuling,JIANG Feng,et al. Research progress in machining technology of nanohole arrays[J]. Journal of Mechanical Engineering,2020,56(9):223-233. [33] WU S,BAMMATTER M,TANG W,et al. High aspect ratio etching of nanopores in PECVD SiC through AAO mask[C]// 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems,2013,986-989. [34] GUDIMETAL P,WANG J,WONG,W. Kerf formation analysis in the abrasive waterjet cutting of industrial ceramics[J]. Journal of Materials Processing Technology,2002,128(1-3):123-129. [35] HAN J,LI C,ZHANG M,et al. An investigation of long pulsed laser induced damage in sapphire[J]. Optics & Laser Technology,2009,41(3):339-344 [36] QI Z,ZHENG Y,WEI J,et al. Surface treatment of an applied novel all-diamond microchannel heat sink for heat transfer performance enhancement[J]. Applied Thermal Engineering,2020,177:115489. [37] QI L,NISHI K,YASUI M,et al. Femtosecond laser ablation of sapphire on different crystallographic facet planes by single and multiple laser pulses irradiation[J]. Journnl Optlaseng,2010,48(10):1000-1007. [38] 宋华伟. 激光辅助加工熔石英玻璃的切削机理与试验研究[D]. 武汉:华中科技大学,2019. SONG Huawei. Research on Cutting mechanism of laser assisted machining for fused silica with experiments[D]. Wuhan:Huazhong University of Science and Technology,2019. [39] 廖先宇. 脉冲激光加热辅助车削氧化铝陶瓷温度场仿真和试验研究[D]. 长沙:湖南大学,2013. LIAO Xianyu. Simulation of temperature fields and experimental research on pulse-laser assisted turning of Al2O3 ceramics[D]. Changsha:Hunan University,2013. [40] GUO Y,YANG X,KANG J,et al. Experimental investigations on the laser-assisted machining of single crystal Si for optimal machining[J]. Optics and Laser Technology,2021,141:107113. [41] PARK S S,WEI Y,JIN X L. Direct laser assisted machining with a sapphire tool for bulk metallic glass[J]. CIRP Annals,2018,67(1):193-196. [42] ITO Y,UEKI M,KIZAKI T,et al. High-efficiency and precision cutting of glass by selective laser-assisted milling[J]. Precision Engineering,2017,47:498-507. [43] WU X,ZENG K,ZHONG L,et al. Hybrid micro-milling assisted with laser oxidation based on the hardness reduction that caused by cemented carbide oxidation[J]. Ceramics International,2021,47(24):35144-35151. [44] WU X,LI L,HE N,et al. Laser induced oxidation of cemented carbide during micro milling[J]. Ceramics International,2019,45(12):15156-15163. [45] 王澍龙. 脉冲激光加热辅助微细切削ZrO2陶瓷[D]. 南京:南京航空航天大学,2015. WANG Shulong. Research on pulse laser assisted micro machining of ZrO2 ceramic[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2015. [46] WANG S L,LI L,HE N,et al. Research on tool wear of PCD micro end mill in machining of ZrO2 ceramics[C]// Materials Science Forum. Trans Tech Publications Ltd,2014,800:20-25. [47] ZHAO G,XIA H,ZHANG Y,et al. Laser-induced oxidation assisted micro milling of high aspect ratio microgroove on WC-Co cemented carbide[J]. Chinese Journal of Aeronautics,2021,34(4):465-475. [48] XIA H,ZHAO G,ZHANG Y,et al. Nanosecond laser-induced controllable oxidation of TiB2–TiC ceramic composites for subsequent micro milling[J]. Ceramics International,2022,48(2):2470-2481. [49] 赵国龙,夏宏军,李亮,等. 激光诱导可控氧化辅助微细铣削TiAl金属间化合物的研究[J]. 机械工程学报,2021,57(9):254-263. ZHAO Guolong,XIA Hongjun,LI Liang,et al. Investigation on laser-induced controllable oxidation assisted micro milling of titanium aluminum intermetallic alloy[J]. Journal of Mechanical Engineering,2021,57(9):254-263. [50] MOHAMMADI H,PATTEN J A. LaYer augmented diamond drilling:A new technique to drill hard and brittle materials[J]. Procedia Manufacturing,2016,5:1337-1347. [51] MENG B,ZHANG J,YUAN D,et al. Machinability improvement of silicon carbide via femtosecond laser surface modification method[J]. Applied Physics A,2019,125(1):69. [52] MENG B,YUAN D,ZHENG J,et al. Molecular dynamics study on femtosecond laser aided machining of monocrystalline silicon carbide[J]. Materials Science in Semiconductor Processing,2019,101:1-9. [53] MA Z,WANG Z,WANG X,et al. Effects of laser-assisted grinding on surface integrity of zirconia ceramic[J]. Ceramics International,2020,46(1):921-929. [54] MA Z,WANG Q,DONG J,et al. Experimental investigation and numerical analysis for machinability of alumina ceramic by laser-assisted grinding[J]. Precision Engineering,2021,72:798-806. [55] AZARHOUSHANG B,SOLTANI B,ZAHEDI A. Laser-assisted grinding of silicon nitride by picosecond laser[J]. The International Journal of Advanced Manufacturing Technology,2017,93:2517-2529. [56] WESTKÄMPER A. Grinding assisted by Nd:YAG lasers[J]. CIRP Annals,1995,44:317-320. [57] CHANG W,LUO X,ZHAO J,et al. Laser assisted micro grinding of high strength Materials[C]// Key Engineering Materials,2011,496:44-49. [58] LI C,HU Y,ZHANG F,et al. Molecular dynamics simulation of laser assisted grinding of GaN crystals[J]. International Journal of Mechanical Sciences,2023,239:107856. [59] TANGWARODOMNUKUN V,WANG J,HUANG C,et al. An investigation of hybrid laser–waterjet ablation of silicon substrates[J]. International Journal of Machine Tools and Manufacture,2010,56:39-49. [60] FENG S,HUANG C,WANG J,et al. Material removal of single crystal 4H-SiC wafers in hybrid laser-waterjet micromachining process[J]. Materials Science in Semiconductor Processing,2018,82:112-125. [61] WANG L,HUANG C,WANG J,et al. An experimental investigation on laser assisted waterjet micro-milling of silicon nitride ceramics[J]. Ceramics International,2018,44(5):5636-5645. [62] JOUDKAZIS S,NISHIMURA K,MISAWA H,et al. Control over the crystalline state of sapphire[J]. Advanced Materials. 2006,18(11):1361-1364. [63] MENG X,CHEN F,YANG Q,et al. Simple fabrication of closed-packed IR microlens arrays on silicon by femtosecond laser wet etching[J]. Applied Physics A:Materials Science and Processing,2015,121(1):157-162. [64] LIU Y,LI X,WANG Z,et al. Morphology adjustable microlens array fabricated by single spatially modulated femtosecond pulse[J]. Nanophotonics,2022,11(3):571-581. [65] WANG S,ZHANG F,YANG Q,et al. Chalcogenide glass IR artificial compound eyes based on femtosecond laser microfabrication[J]. Advanced Materials Technologies,2023,8(2):2200741. [66] ZHOU W,LI R,LI M,et al. Fabrication of microlens array on chalcogenide glass by wet etching-assisted femtosecond laser direct writing[J]. Ceramics International,2022,48(13):18983-18988. [67] HU Y,RAO S,WU S,et al. All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching[J]. Advanced Optical Materials,2018,6(9):1701299. [68] LIANG J,WANG H,HU T,et al. Mammalian cornea inspired anti-fogging silica glass surface achieved by femtosecond laser[J]. Advanced Optical Materials,2023,11(7):2202287. [69] TANG S,BIAN H,YANG Q,et al. Large-scale high quality glass microlens arrays fabricated by laser enhanced wet etching[J]. Optics Express,2014,22(23):29283-29291. [70] LU Y,DUAN Y,LIU X,et al. High-quality rapid laser drilling of transparent hard materials[J]. Optics Letters,2022,47(4):921-924. [71] NAKASHIMA S,SUGIOKA K,ITO T,et al. Fabrication of high-aspect-ratio nanohole arrays on GaN surface by using wet-chemical-assisted femtosecond laser ablation[J]. Journal of Laser Micro Nanoengineering,2011,6(1):15-19. [72] OU Y,LI C,QIAN J,et al. Fabrication of hexagonal microstructure on gallium nitride films by wet etching assisted femtosecond laser ablation[J]. Optics Communications,2023,528:128952. [73] TOKEL O,TURNALL A,MAKEY G,et al. In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon[J]. Nature Photonics,2017,11(10):639-645. [74] RUFFIEUX P,SCHARF T,PHILIPOUSSIS I,et al. Two step process for the fabrication of diffraction limited concave microlens arrays[J]. Optics Express,2008,16(24):19541-19549. [75] WU C Y,CHIANG T H,HSU C C. Fabrication of microlens array diffuser films with controllable haze distribution by combination of breath figures and replica molding methods[J]. Optics Express,2008,16(24):19978-19986. [76] WANG B X,QI J Y,LU Y M,et al. Rapid fabrication of smooth micro-optical components on glass by etching-assisted femtosecond laser modification[J]. Materials,2022,15(2):678. [77] WANG W,SONG H,LIAO K,et al. Water-assisted femtosecond laser drilling of 4H-SiC to eliminate cracks and surface material shedding[J]. International Journal of Advanced Manufacturing Technology,2021,112(1-2):553-562. [78] LI Q,YU Y,WANG L,et al. Sapphire-based fresnel zone plate fabricated by femtosecond laser direct writing and wet etching[J]. IEEE Photonics Technology Letters,2016,28(12):1290-1293. [79] 任乃飞,宋佳佳,李保家,等. 飞秒激光刻蚀氧化锆表面微纳结构及其润湿与抗菌性能[J]. 表面技术,2022,51(9):359-370. REN Naifei,SONG Jiajia,LI Baojia,et al. Micro-nano structures,wettability and antibacterial property on zirconia surfaces by femtosecond laser etching[J]. Surface Technology,2022,51(9):359-370. [80] SUN X,ZHOU F,DONG X,et al. Fabrication of GaAs micro-optical components using wet etching assisted femtosecond laser ablation[J]. Journal of Modern Optics,2020,67(20):1516-1523. [81] WANG B,ZHENG J,QI J,et al. Integration of multifocal microlens array on silicon microcantilever via femtosecond-laser-assisted etching technology[J]. Micromachines,2022,13(2):218. [82] LIU X,CHEN Q,GUAN K,et al. Dry-etching-assisted femtosecond laser machining[J]. Laser and Photonics Reviews,2017,11(3):1600115 [83] LIU X,YU L,YANG S,et al. Optical nanofabrication of concave microlens arrays[J]. Laser and Photonics Reviews,2019,13(5):1800272. [84] LIU X,YANG S,YU L,et al. Rapid engraving of artificial compound eyes from curved sapphire substrate[J]. Advanced Functional Materials,2019,29(18):1900037. [85] HUANG Y,TANG F,GUO Z,et al. Accelerated ICP etching of 6H-SiC by femtosecond laser modification[J]. Applied Surface Science,2019,488:853-864. [86] YU L,YANG S,LIU X,et al. Ion beam etching assisted femtosecond laser machining to manufacture silicon carbide micro-optical components[J]. Acta Photonica Sinica,2018,47(12):1214003. [87] WU C,FANG X,Liu F,et al. High speed and low roughness micromachining of silicon carbide by plasma etching aided femtosecond laser processing[J]. Ceramics International,2020,46(11):17896-17902. [88] WANG L,ZHAO Y,YANG Z,et al. Femtosecond laser micromachining in combination with ICP etching for 4H–SiC pressure sensor membranes[J]. Ceramics International,2021,47(5):6397-6408. [89] ZHAO Y,ZZHAOY,WANG L,et al. Femtosecond laser processing assisted SiC high-temperature pressure sensor fabrication and performance Test[J]. Micromachines,2023,14(3):587. [90] 刘峰,郭旭红,韩玉杰,等. 基于离子束辅助激光的硬质合金表面微织构制备方法研究[J]. 表面技术,2021,50(4):103-112. LIU Feng,GUO Xuhong,HAN Yujie,et al. Study on fabrication method of micro-textures on cemented carbide surface based on ion beam etching-assisted laser[J]. Surface Technology,2021,50(4):103-112. [91] YANG S N,LIU X Q,ZHENG J X,et al. Periodic microstructures fabricated by laser interference with subsequent etching[J]. Nanomaterials,2020,10(7):1313. [92] ZHANG J,SUGIOKA K,MIDORIKAWA K. Laser-induced plasma-assisted ablation of fused quartz using the fourth harmonic of a Nd+:YAG laser[J]. Applied Physics A,1998,67:545-549. [93] HONG M,SUGIOKA K,WU D,et al. Laser-induced-plasma-assisted ablation for glass microfabrication[C]// Proceedings of SPIE-The International Society for Optical Engineering,2001,4595:138-146. [94] RAHMAN T U,REHMAN Z U,ULLAH S,et al. Laser-induced plasma-assisted ablation (LIPAA) of glass:Effects of the laser fluence on plasma parameters and crater morphology[J]. Optics & Laser Technology,2019,120:105768. [95] HANADA Y,SUGIOKA K,MIYAMOTO I,et al. Colour marking of transparent materials by laser-induced plasma-assisted ablation (LIPAA)[C]// Journal of Physics:Conference Series,2007,59:687-690. [96] LIU X,LI Y,LIN W,et al. High-aspect-ratio crack-free microstructures fabrication on sapphire by femtosecond laser ablation[J]. Optics and Laser Technology,2020,132:106472. [97] WEN Q,CHEN J,LU J,et al. Effect of target on micromachining of sapphire using laser-induced plasma-assisted ablation[J]. Ceramics International,2023,49(9):14470-14477. [98] CHEN J,LU X,LI Z,et al. Anisotropy of material removal during laser-induced plasma assisted ablation of sapphire[J]. Ceramics International,2022,48(10):13880-13889. [99] 姜峰,江安娜,卢希钊,等. 激光诱导等离子体辅助双面研磨透明材料的装置及方法:CN114290230A[P]. 2022-04-08. JIANG Feng,JIANG Anna,LU Xizhao,et al. Device and method for laser induced plasma assisted double-sided grinding of transparent materials:CN114290230A[P]. 2022-04-08. [100] 温秋玲,陈金鸿, 徐西鹏,等. 激光诱导活性离子刻蚀金刚石的加工装置及加工方法:CN114083139A[P]. 2022-05-05. WEN Qiuling,CHEN Jinhong,XU Xipeng,et al. Laser induced active ion etching of diamond processing device and method:CN114083139B[P]. 2022-05-05. [101] PAN C,CHEN K,LIU B,et al. Fabrication of micro-texture channel on glass by laser-induced plasma-assisted ablation and chemical corrosion for microfluidic devices[J]. Journal of Materials Processing Technology,2017,240:314-323. [102] WANG X,HUANG Y,XING Y,et al. Fabrication of micro-channels on Al2O3/TiC ceramics using picosecond laser induced plasma micromachining[J]. Journal of Manufacturing Processes,2019,44:102-112. [103] SAXENA I,EHMANN K F. Multimaterial capability of laser induced plasma micromachining[J]. Journal of Micro and Nano-Manufacturing,2014,2(3):031005. [104] TANG H,QIU P,CAO R,et al. Repulsive magnetic field–assisted laser-induced plasma micromachining for high-quality microfabrication[J]. The International Journal of Advanced Manufacturing Technology,2019,102(5-8):2223-2229. [105] ZHANG Y,ZGANG Z,ZHANG Y,et al. Study on machining characteristics of magnetically controlled laser induced plasma micro-machining single-crystal silicon[J]. Journal of Advanced Research,2021,30:39-51. [106] ZHANG Y,LIU Y,BHANDARI S,et al. Investigation of the capabilities of transverse magnetic field controlled laser-induced plasma micro-machining[J]. Journal of Manufacturing Science and Engineering,2021,143(6):061002. [107] CHAREE W,QI H,SAETANG,V. Underwater laser micromachining of silicon in pressurized environment[J]. International Journal of Advanced Manufacturing Technology,2022,122(7-8):3161-3169. [108] ALAHMARI A M,AHMED N,DARWISH S. Laser beam micro-machining under water immersion[J]. International Journal of Advanced Manufacturing Technology,2016,83(9-12):1671-1681. [109] VAN D L S,HAGMEIJER R,ROMER G . Picosecond pulsed underwater laser ablation of silicon and stainless steel:Comparing crater analysis methods and analysing dependence of crater characteristics on water layer thickness[J]. Applied Surface Science,2021,540 :148005. [110] WU C,FANG X,KANG Q,et al. Crystal cleavage,periodic nanostructure and surface modification of SiC ablated by femtosecond laser in different media[J]. Surface and Coatings Technology,2021,424:127652. [111] ZHU S,LU Y F,HONG M H,et al. Laser ablation of solid substrates in water and ambient air[J]. Journal of Applied Physics,2001,89(4):2400-2403. [112] GUO Y,QIU P,XU S,et al. Laser-induced microjet-assisted ablation for high-quality microfabrication[J]. International Journal of Extreme Manufacturing,2022,4(3):035101. [113] REN N,GAO F,WANG H,et al. Water-induced effect on femtosecond laser layered ring trepanning in silicon carbide ceramic sheets using low-to-high pulse repetition rate[J]. Optics Communications,2021,496:127040. [114] REN N,XIA K,YANG H,et al. Water-assisted femtosecond laser drilling of alumina ceramics[J]. Ceramics International,2021,47(8):11465-11473. [115] MORITA N,ISHIDA S,FUJIMORI Y,et al. Pulsed laser processing of ceramics in water[J]. Applied Physics Letters,1988,52:1965-1966. [116] NAKASHIMA S,SUGIOKA K,MIDORIKAWA K. Micro and Nanofabrication of GaN by Wet-Chemical-Assisted Femtosecond Laser Ablation[C]// International Conference on Micro/Nanoscale Heat Transfer. 2009,43895:705-712. [117] SUGIOKA K,CHENG Y. Fabrication of 3D microfluidic structures inside glass by femtosecond laser micromachining[J]. Applied Physics A:Materials Science and Processing,2013,114(1):215-221. [118] RICHMANN A,KUZMINYKH Y,RICHERZHAGEN B,et al. Laser microjet cutting of up to 3 mm thick sapphire[C]// International Congress on Applications of Lasers and Electro-Optics,2014,269:1139-1143. [119] ELKINGTON H,MARIMUTHU S,SMITH B. High power water jet guided laser cutting of SiC/SiC ceramic matrix composite[J]. Journal of Laser Micro Nanoengineering,2022,17(3):168-173. [120] MARIMUTHU S,DUNLEAVEY J,LIU Y,et al. Water-jet guided laser drilling of SiC reinforced aluminium metal matrix composites[J]. Journal of Composite Materials,2019,53(26-27):3787-3796. [121] ZHANG X,WEI Q,WANG H. Research studies on kerf quality of cutting single crystal diamond with water-jet guided laser[J]. Journal of Optoelectronics and Advanced Materials,2022,24(3-4):162-167. [122] ZHANG Y,QIAO H,ZHAO J,et al. Surface topography by water jet-guided laser texturing on wettability of monocrystalline silicon[J]. International Journal of Advanced Manufacturing Technology,2022,120(3-4):2747-2761. [123] QIAO H,ZHIHE C,CUI J,et al. Experimental study on water jet guided laser micro-machining of mono-crystalline silicon[J]. Optics & Laser Technology,2021,140:107057. [124] WANG J,NIINO H,YABE A. One-step microfabrication of fused silica by laser ablation of an organic solution[J]. Applied Physics A:Materials Science & Processing,1999,68(1):111-113. [125] KAWAGUCHI Y,SATO T,NARAZAKI A,et al. Etching a micro-trench with a maximum aspect ratio of 60 on silica glass by laser-induced backside wet etching (LIBWE)[J]. Japanese Journal of Applied Physics,2005,44(1-7):176-178. [126] XIE X,HU M,CHEN W,et al. Cavitation bubble dynamics during laser wet etching of transparent sapphire substrates by 1 064 nm laser irradiation[J]. Journal of Laser Micro Nanoengineering,2013,8(3):259-265. [127] XIE X,HUANG X,JIANG W,et al. Three dimensional material removal model of laser-induced backside wet etching of sapphire substrate with CuSO4 solutions[J]. Optics and Laser Technology,2017,89:59-68. [128] TAN Y,CHU W,WANG P,et al. Water-assisted laser drilling of high-aspect-ratio 3D microchannels in glass with spatiotemporally focused femtosecond laser pulses[J]. Optical Materials Express,2019,9(4):1971-1978. [129] KOWN K K,KIM H,KIM T,et al. High aspect ratio channel fabrication with near-infrared laser-induced backside wet etching[J]. Journal of Materials Processing Technology,2020,278:116505. [130] 张先烁,张朝阳,朱帅杰,等. 一种液态流动涂层辅助激光背向湿刻加工低锥度玻璃深孔的装置及方法:CN110640337A[P]. 2020-01-03. ZHANG Xianshuo,ZHANG Chaoyang,ZHU Shuangjie,et al. A device and method for processing low taper glass deep holes using liquid flow coating assisted laser back wet etching:CN110640337A[P]. 2020-01-03. [131] JIAO L,ZHENG H,ZHANG Y,et al. Picosecond laser drilling of silicon with applied voltage[J]. SN Applied Sciences,2019,1(1):80. [132] ZHENG H,JIANG Z. Femtosecond laser micromachining of silicon with an external electric field[J]. Journal of Micromechanics and Microengineering,2010,20(1):017001 [133] SCHÄFER M,TEREKHIN P N,KANG Y,et al. Magnetic-field assisted laser ablation of silicon[J]. JOSA B,2021,38(12):1-6. [134] FARROKHI H,GRUZDEV V,ZHENG H,et al. Magneto-absorption effects in magnetic-field assisted laser ablation of silicon by UV nanosecond pulses[J]. Applied Physics Letters,2016,108(25):254103. [135] MIYAMOTO N,ITO T,WEI C,et al. Ultrafast internal modification of glass by selective absorption of a continuous-wave laser into excited electrons[J]. Optics Letters,2020,45(11):3171-3174. [136] ITO Y,YOSHIZAKI R,MIYUMOTO N,et al. Ultrafast and precision drilling of glass by selective absorption of fiber-laser pulse into femtosecond-laser-induced filament[J]. Applied Physics Letters,2018,113(6):061101. [137] YOSHIZAKI R,ITO Y,YOSHITAKE S,et al. Mechanism of material removal through transient and selective laser absorption into excited electrons in fused silica[J]. Journal of Applied Physics,2021,130(5):053102. [138] LI Y,LIU H,HONG M. High-quality sapphire microprocessing by dual-beam laser induced plasma assisted ablation[J]. Optics Express,2020,28(5):6242-6250. |
[1] | JIANG Anna, YAN Lan, WANG Ningchang, JIANG Feng, LI Zhuo, WEN Qiuling, LU Xizhao, HUANG Hui. Research Status and Development Trends for Energy Field-assisted Laser Induced Plasma-assisted Ablation of Transparent Brittle Materials [J]. Journal of Mechanical Engineering, 2024, 60(9): 254-272. |
[2] | DU Jianbiao, ZHANG Qiang, ZONG Wenjun. Summary of Single Point Diamond Turning Technology for Hard, Brittle and ferrous Metal Materials [J]. Journal of Mechanical Engineering, 2023, 59(7): 156-175. |
[3] | PAN Xin, PENG Ruixuan, ZHANG Haoyu, WU Haiqi, GAO Jinji. Research on Novel Electromagnetic Automatic Balancing System for High-end Mechanical Equipment [J]. Journal of Mechanical Engineering, 2023, 59(18): 3-12. |
[4] | WU Haili, ZHANG Changchun, SUN Lingen, XU Qianhong. Creep-Fatigue Interaction Behaviors and Microstructure Evolution of Ni-based Superalloy 617 [J]. Journal of Mechanical Engineering, 2022, 58(8): 170-180. |
[5] | SU Ruiming, JIA Yongxin, HU Shiyang, QU Yingdong, LI Rongde. Effects of Secondary Aging on Microstructure and Properties of Al-Cu-Mg Alloy [J]. Journal of Mechanical Engineering, 2022, 58(4): 102-110. |
[6] | SHEN Jiwen, MING Pingmei, ZHANG Xinmin, NIU Shen, XIA Yakun, ZHANG Yunyan, WANG Wei, LI Dongdong. Fabrication of Massive Metal Microstructures by Rotating Through-mask Electrochemical Transferring Technology [J]. Journal of Mechanical Engineering, 2022, 58(11): 295-307. |
[7] | LIAN Yunsong, XIE Chaoping, ZHOU Wei, CHU Xuyang, ZHAO Guolong. Performance Research on Bionic Tools Based on Surface Microstructures of Blood Clams in Dry Cutting of GH4169 [J]. Journal of Mechanical Engineering, 2021, 57(13): 242-251. |
[8] | GAO Lianling, YU Shengfu, YU Runzhen, HE Tianying, SHI Yusheng. Study on Arc Additive Manufacturing Process and Properties of 5356 Aluminum Alloy Rocket Booster Module Transition End Frame [J]. Journal of Mechanical Engineering, 2020, 56(8): 28-36. |
[9] | LUO Yihui, PENG Qianqian, ZHU Yuchao, WANG Guangshun, WU Dezhi, ZHU Rui, XIE Yu, SUN Daoheng. Experimental Study of Flexible Pressure Sensor via Direct Writing [J]. Journal of Mechanical Engineering, 2019, 55(11): 90-97. |
[10] | WANG Gang, REN Ke, HU Yisen, YE Mao, WANG Shuqing, RONG Yiming. Microstructural Characteristics-based Mechanical Behavior of Aerospace Al-Cu Alloys [J]. Journal of Mechanical Engineering, 2018, 54(9): 77-85. |
[11] | DU Bo, SUN Zhuanping, YANG Xinqi, CUI Lei. Microstructure and Mechanical Properties of Friction Plug Welding Joints for Dissimilar Aluminum Alloys [J]. Journal of Mechanical Engineering, 2017, 53(4): 43-48. |
[12] | YANG Xinqi, CUI Lei, HOU Xiaopeng, YIN Yayun. Study on the Microstructures and Properties of Underwater Friction Hydro Pillar/Taper-Pillar Welded Joints for Dissimilar Steels [J]. Journal of Mechanical Engineering, 2016, 52(24): 44-51. |
[13] | SUN Daqian, ZHANG Yueying, SU Lei, LI Hongmei, GU Xiaoyan. Effects of Electrode Morphology on Microstructures and Mechanical Properties of Spot Welded Al-steel Joints [J]. Journal of Mechanical Engineering, 2016, 52(24): 36-43. |
[14] | LI Dichen;HE Jiankang;TIAN Xiaoyong;LIU Yaxiong;ZHANG Anfeng;LIAN Qin;JIN Zhongmin;LU Bingheng. Additive Manufacturing:Integrated Fabrication of Macro/Microstructures [J]. , 2013, 49(6): 129-135. |
[15] | JIAO Hongyu;ZHOU Qicai;LI Wenjun;LI Ying. Periodic Topology Optimization Using Variable Density Method [J]. , 2013, 49(13): 132-138. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||