Journal of Mechanical Engineering ›› 2024, Vol. 60 ›› Issue (7): 350-373.doi: 10.3901/JME.2024.07.350
Previous Articles Next Articles
DING Wenfeng1, ZHAO Junshuai1, ZHANG Honggang2, ZHAO Biao1, SI Wenyuan3, SONG Qiang3, HUANG Qingfei3
Received:
2023-05-31
Revised:
2023-09-12
Online:
2024-04-05
Published:
2024-06-07
CLC Number:
DING Wenfeng, ZHAO Junshuai, ZHANG Honggang, ZHAO Biao, SI Wenyuan, SONG Qiang, HUANG Qingfei. Advances in High Efficiency Precision Grinding and Surface Integrity Control Technology for Gears[J]. Journal of Mechanical Engineering, 2024, 60(7): 350-373.
[1] MAYER J E, PRICE A H,PURUSHOTHAMAN G K,et al. Specific grinding energy causing thermal damage in helicopter gear steel[J]. Journal of Manufacturing Processes,2002,4(2):142-147. [2] 谭建军,朱才朝,李浩,等. 基础运动对漂浮式风电机组齿轮箱传动系统附加激励的影响[J]. 机械工程学报,2023,59(1):35-49. TAN Jianjun,ZHU Chaocai,LI Hao,et al. Influences of base motions on additional excitations of floating wind turbine gearbox transmission system[J]. Journal of Mechanical Engineering,2023,59(1):35-49. [3] 周如传,赵宁,李旺,等. 锥形面齿轮副的几何展成及轮齿接触分析[J].机械工程学报,2020,56(7):86-95. ZHOU Ruchuan,ZHAO Ning,LI Wang,et al. Generation,TCA and stress analysis of the face gear drive with a tapered involute pinion[J]. Journal of Mechanical Engineering,2020,56(7):86-95. [4] YANG Y,WU Y,LI Y,et al. Effects of tooth modification in the involute helical gear form-grinding process on loaded transmission character with consideration of tooth axial inclination error[J]. Machines,2023,11(2):305. [5] RIABCHENKO S,KRIVOSHEJA A,BURYKIN V,et al. Gear grinding by super hard materials wheels[J]. Advanced Manufacturing Process,2020,273-280. [6] 赵韩,吴其林,黄康,等. 国内齿轮研究现状及问题研究[J]. 机械工程学报,2013,49(19):11-20. ZHAO Han,WU Qilin,HUANG Kang,et al. Status and problem research on gear study[J]. Journal of Mechanical Engineering,2013,49(19):11-20. [7] 刘怀举,张博宇,朱才朝,等. 齿轮接触疲劳理论研究进展[J]. 机械工程学报,2022,58(3):95-120. LIU Huaiju,ZHANG Boyu,ZHU Chaocai,et al. State of art of gear contact fatigue theories[J]. Journal of Mechanical Engineering,2022,58(3):95-120. [8] GHOSH S,CHATTOPADHYAY A,PAUL S. Modelling of specific energy requirement during high-efficiency deep grinding[J]. International Journal of Machine Tools and Manufacture,2008,48(11):1242-1253. [9] MATHEW N T,VIJAYARAGHAVAN L. Wear of silicon carbide wheel during grinding of intermetallic titanium aluminide[J]. International Journal of Machining and Machinability of Materials,2020,22(2):122-136. [10] 黄水泉,高尚,黄传真,等. 脆性材料磨粒加工的纳米尺度去除机理[J]. 金刚石与磨料磨具工程,2022,42(3):257-267. HUANG Shuiquan,GAO Shang,HUANG Chuanzhen,et al. Nanoscale removal mechanisms in abrasive machining of brittle solids[J]. Diamond and Abrasives Engineering,2022,42(3):257-267. [11] ASLAN D,BUDAK E. Semi-analytical force model for grinding operations[C]//6th CIRP International Conference on High Performance Cutting,Berkeley,CA,2014,14(14):7-12. [12] LIU X,WANG S,YUE C,et al. Numerical calculation of grinding wheel wear for spiral groove grinding[J]. International Journal of Advanced Manufacturing Technology,2022,120(5-6):3393-3404. [13] CHEN H,TANG J,ZHOU W. Modeling and predicting of surface roughness for generating grinding gear[J]. Journal of Materials Processing Technology,2013,213(5):717-721. [14] BOTTGER J,KIMME S,DROSSEL W G. Simulation of dressing process for continuous generating gear grinding[C]//12th CIRP Conference on Intelligent Computation in Manufacturing Engineering,Italy,2019,79:280-285. [15] OPHEY M,LÖPENHAUS C,KLOCKE F. Influence of tool specification and machining parameters on the wear behaviour at generating gear grinding[J]. Applied Mechanics and Materials,2015,794:231-238. [16] MA XF,CAI ZQ,YAO B,et al. Prediction model for surface generation mechanism and roughness in face gear grinding[J]. International Journal of Advanced Manufacturing Technology,2022,120(7-8):4423-4442. [17] 别文博,赵波,高国富,等. 切向超声振动辅助成形磨削齿轮的切削系数建模与试验研究[J]. 机械工程学报,2022,58(7):295-308. BIE Wenbo,ZHAO Bo,GAO Guofu,et al. Analytical modeling and experimental investigation on cutting coefficient during tangential ultrasonic vibration-assisted forming grinding gear[J]. Journal of Mechanical Engineering,2022,58(7):295-308. [18] MALEC J,CERVUNKA F,BLAZICEK D,et al. The attempt of new approach to evaluate surface integrity[J]. Defect and Diffusion Forum,2016,368:15-19. [19] WEI J,PAN Z,LIN X,et al. Copula-function-based analysis model and dynamic reliability of a gear transmission system considering failure correlations[J]. Fatigue and Fracture of Engineering Materials and Structures,2019,42(1):114-128. [20] SYZRANTSEVA K V. Development of a method to calculate the strength reliability of tooth gears based on the fatigue resistance when the teeth bend[J]. Journal of Machinery Manufacture and Reliability,2009,38(6):552-556. [21] 高玉魁,赵振业. 齿轮的表面完整性与抗疲劳制造技术的发展趋势[J]. 金属热处理,2014,39(4):1-6. GAO Yukui,ZHAO Zhenye. Development trend of surface integrity and anti-fatigue manufacture of gears[J]. Heat Treatment of Metals,2014,39(4):1-6. [22] ZHANG J,SHAW B. The effect of superfinishing on the contact fatigue of case carburised gears[J]. Applied Mechanics and Materials,2011,86:348-351. [23] NAMBOOTHIRI N,MARIMUTHU P. Fracture characteristics of asymmetric high contact ratio spur gear based on strain energy release rate[J]. Engineering Failure Analysis,2022,134:106038. [24] 刘永平,吴序堂,李鹤岐. 数控锥面砂轮磨齿机磨削椭圆齿轮[J]. 机械工程学报,2006,12:70-75. LIU Yongping,WU Xutang,LI Heqi. Grinding of elliptical gears with CNC conical wheel gear grinding machine[J]. Journal of Mechanical Engineering,2006,12:70-75. [25] 凌四营,王立鼎,李克洪,等. 基于1级精度基准标准齿轮的超精密磨齿工艺[J]. 光学精密工程,2011,19(7):1596-1604. LING Siying,WANG Liding,LI Kehong,et al. Ultra-precision gear-grinding processing based on class 1 master gear[J] Optical Precision Engineering,2011,19(7):1596-1604. [26] WANG C S,YAO P,WANG J,et al. Study on the simplification of spiral bevel gear grinding model[J]. Materials Science Forum,2016,861:108-114. [27] 吴其林,赵韩,邱明明,等. 微线段齿轮磨削加工方法及性能分析[J]. 机械工程学报,2017,53(13):179-187. WU Qilin,ZHAO Han,QIU Mingming,et al. Grinding method and performance analysis of micro-segment gears[J]. Journal of Mechanical Engineering,2017,53(13):179-187. [28] ONISHI T,MURATA Y,FUJIWARA K,et al. Accurate estimation of workpiece dimension in plunge grinding without sizing gauge[J]. Precision Engineering,2020,74; 441-446. [29] MA X,CAI Z,YAO B,et al. Dynamic grinding force model for face gear based on the wheel-gear contact geometry[J]. Journal of Materials Processing Technology,2022,306:117633. [30] CAI S,CAI Z,YAO B,et al. Face gear generating grinding residual model based on the normal cutting depth iterative method[J]. International Journal of Advanced Manufacturing Technology,2023,126(1-2):355-369. [31] OPHEY M,KLOCKE F,LOPENHAUS C. Approach for modeling grinding worm wear in generating gear grinding[J]. Forsch Ingenieurwes,2017,81(2-3):307-316. [32] REICHSTEIN M,CATONI F,PROF. CRONJÄGER. Grinding of gears with vitreous bonded CBN-worms[J]. CIRP Annals-Manufacturing Technology,2006,55(1):355-358. [33] YU B,KOU H,ZHAO B,et al. Approximation model for longitudinal-crowned involute helical gears with flank twist in continuous generating grinding[J]. International Journal of Advanced Manufacturing Technology,2021,114(9):3675-3694. [34] CAO B,LI G L,FORTUNATO A,et al. Continuous generating grinding method for beveloid gears and analysis of grinding characteristics[J]. Advances in Manufacturing,2022,10(3):459-478. [35] WANG Y Z,CHEN Y Y,ZHOU G M,et al. Roughness model for tooth surfaces of spiral bevel gears under grinding[J]. Mechanism and Machine Theory,2016,104:17-30. [36] 丁国龙,张颂,赵大兴,等. 基于诱导法曲率的齿轮成形磨削干涉分析[J]. 机械工程学报,2016,52(3):197-204. DING Guolong,ZHANG Song,ZHAO Daxing,et al. Interference study of gear form grinding based on induced normal curvature[J]. Journal of Mechanical Engineering,2016,52(3):197-204. [37] 李彦,汪中厚,刘雷,等. 成形法双面磨削拓扑修形误差齿面对齿轮传动的影响[J]. 中国机械工程,2022,33(14):1661-1669. LI Yan,WANG Zhonghou,LIU Lei,et al. Effects of tooth surfaces of topographic profile errors in double-sided grinding on gear transmission by forming method[J]. Journal of Mechanical Engineering,2022,33(14):1661-1669. [38] 王龙,汪刘应,唐修检,等. 成形法磨削齿轮的磨削温度模型构建与分析[J]. 机械工程学报,2022,58(3):295-304. WANG Long,WANG Liuying,TANG Xiujian,et al. Construction and analysis of grinding temperature model for gear processed by form grinding technology[J]. Journal of Mechanical Engineering,2022,58(3):295-304. [39] KRUSZYŃSKI B,LUTTERVELT C. Prediction of temperature and surface integrity in gear grinding[J]. International journal of machine tools and manufacture,1994,34(5):633-640. [40] LISHCHENKO N V,LARSHIN V P. Gear-grinding temperature modeling and simulation[C]//Proceedings of the 5th International Conference on Industrial Engineering. Springer,Cham,2019:289-297. [41] LISHCHENKO N V,LARSHIN V P. Profile gear grinding temperature determination[C]//Proceedings of the 4th International Conference on Industrial Engineering. Springer,Cham,2018:1723-1730. [42] YI J,JIN T,ZHOU W,et al. Theoretical and experimental analysis of temperature distribution during full tooth groove form grinding[J]. Journal of Manufacturing Processes,2020,58:101-115. [43] YI J,JIN T,DENG Z,et al. Estimation of residual stresses in gear form grinding using finite element analysis and experimental study based on grinding force and heat flux distribution models[J]. International Journal of Advanced Manufacturing Technology,2019,104(1):849-866. [44] XIAO Y,WANG S,MA C,et al. Measurement and modeling methods of grinding-induced residual stress distribution of gear tooth flank[J]. International Journal of Advanced Manufacturing Technology,2021,115(11):3933-3944. [45] XIAO Y,MA C,WANG S,et al. Numerical modeling of material removal mechanism and surface topography for gear profile grinding[J]. Journal of manufacturing processes,2022,76:719-739. [46] GUO H,WANG X,ZHAO N,et al. Simulation analysis and experiment of instantaneous temperature field for grinding face gear with a grinding worm[J]. International Journal of Advanced Manufacturing Technology,2022,120(7):4989-5001. [47] SU J,ZHANG H,JIANG C,et al. Prediction and experimental study on thermal stress in multi-tooth form grinding of cycloid gear[J]. International Journal of Advanced Manufacturing Technology,2021,117(1):187-198. [48] WANG Y,ZHANG W,LIU Y. Analysis model for surface residual stress distribution of spiral bevel gear by generating grinding[J]. Mechanism and Machine Theory,2018,130:477-490. [49] 赵恒华,宋涛,蔡光起. 磨削加工技术的发展趋势[J]. 制造技术与机床,2012,594(1):55-58. ZHAO Henghua,SONG Tao,CAI Guangqi. The development trends of grinding process technology[J]. Manufacturing Technology and Machine Tool,2012,594(1):55-58. [50] 蔡光起,赵恒华,高兴军. 高速高效磨削加工及其关键技术[J]. 制造技术与机床,2004(11):42-45. CAI Gangqi,ZHAO Henghua,GAO Xingjun. High speed and efficient grinding and its key technologies[J]. Manufacturing Technology and Machine Tool,2004(11):42-45. [51] 王楚琦,寇自力. 纯相PcBN的高温高压制备综述[J]. 金刚石与磨料磨具工程,2022,42(2):162-168. WANG Chuqi,KOU Zili. A review of preparing binderless PcBN at high temperature and high pressure[J]. Diamond and Abrasives Engineering,2022,42(2):162-168. [52] TANG J,FENG Y,CHEN X M. The principle of profile modified face-gear grinding based on disk wheel[J]. Mechanism and Machine Theory,2013,70:1-15. [53] EMURA T,WANG L,ARAKAWA A. A study on a high-speed NC gear grinding machine using a screw-shaped CBN wheel[J]. Asme Journal of Mechanical Design,1994,116(4):1163-1168. [54] FAN K,GAO R,ZHOU H,et al. An optimization method for thermal behavior of high-speed spindle of gear form grinding machine[J]. The International Journal of Advanced Manufacturing Technology,2020,107(4):959-970. [55] 陈鑫,王栋,刘昱范. 高速磨削对18CrNiMo7-6表面完整性的影响研究[J]. 表面技术,2018,47(9):259-265. CHEN Xin,WANG Dong,LIU Yufan. Influence of high speed grinding on surface integrity of 18CrNiMo7-6[J]. Surface Technology,2018,47(9):259-265. [56] EMURA T,WANG L,YAMANAKA M,et al. A PC-based synchronous controller for NC gear grinding machines using multithread CBN wheel[J]. Journal of Mechanical Design,2001,123(4):590-597. [57] 赵恒华,冯宝富,高贯斌,等. 超高速磨削技术在机械制造领域中的应用[J]. 东北大学学报,2003,24(6):564-568. ZHAO Henghua,FENG Baofu,GAO Guanbin,et al. Application of ultra-high speed grinding technologies in the field of mechanical manufacturing[J]. Journal of Northeast University,2003,24(6):564-568. [58] 杨洪波,赵恒华,刘伟锐. 磨削技术的现状和未来发展趋势[J]. 机械制造与自动化,2014,43(6):7-9. YANG Hongbo,ZHAO Henghua,LIU Weirui. Present situation and future development trend of grinding technology[J]. Machine Building and Automation,2014,43(6):7-9. [59] XU L,WU Q,HUANG Y,et al. Effect of high speed grinding on surface integrity of cycloid gear[C]//2021 IEEE 11th Annual International Conference on CYBER Technology in Automation,Control,and Intelligent Systems (CYBER),2021,711-716. [60] 王建宇,黄国钦. 金刚石磨粒工具增材制造技术现状及展望[J]. 金刚石与磨料磨具工程,2022,42(3):307-316. WANG. Jianyu,HUANG Guoqin. Review on manufacturing diamond abrasive tools by additive manufacturing technology[J]. Diamond and Abrasives Engineering,2022,42(3):307-316. [61] 方其先,黄明志. CBN砂轮对渗碳齿轮磨削质量的影响[J]. 金刚石与磨料磨具工程,1992,22(5):13-17. FANG Qixian,HUANG Mingzhi. The effect of CBN grinding wheel on the grinding quality of carburized gears[J]. Diamond and Abrasive Engineering,1992,22(5):13-17. [62] INOUE K,SONODA H,DENG G,et al. Effect of CBN grinding on the bending strength of carburized gears[J]. Journal of Mechanical Design,1998,120(4):606-611. [63] YOU H,YE P,WANG J,et al. Design and application of CBN shape grinding wheel for gears[J]. International Journal of Machine Tools & Manufacture,2003,43(12):1269-1277. [64] WANG Y,LAN Z,HOU L,et al. A precision generating grinding method for face gear using CBN wheel[J]. International Journal of Advanced Manufacturing Technology,2015,79(9-12):1839-1848. [65] CHU X,WANG Y,DU S,et al. An efficient generation grinding method for spur face gear along contact trace using disk CBN wheel[J]. International Journal of Advanced Manufacturing Technology,2020,110(5-6):1179-1187. [66] BADGER J,TORRANCE A. A comparison of two models to predict grinding forces from wheel surface topography[J]. International Journal of Machine Tools and Manufacture,2000,40(8):1099-1120. [67] CHANG H C,WANG J. A stochastic grinding force model considering random grit distribution[J]. International Journal of Machine Tools and Manufacture,2008,48(12-13):1335-1344. [68] 吕长飞,李郝林. 外圆纵向磨削力和磨削功率模型研究[J]. 现代制造工程,2011,375(12):72-75. LÜ Changfei,LI Haolin. The study of external cylindrical grinding force and power model[J] Modern Manufacturing Engineering,2011,375(12):72-75. [69] XU W,LI C,ZHANG Y,et al. Electrostatic atomization minimum quantity lubrication machining:From mechanism to application[J]. International Journal of Extreme Manufacturing,2022,4(4):43. [70] KLOCKE F,BRUMM M,REIMANN J. Development and validation of a cutting force model for generating gear grinding[J]. Forschung im Ingenieurwesen,2013,77(3-4):81-94. [71] WANG L,TIAN X,LIU Q,et al. Experimental study and theoretical analysis of the form grinding of gears using new type micro-crystal corundum grinding wheels[J]. International Journal of Advanced Manufacturing Technology,2017,92(5-8),1659-1669. [72] 王晓铭,李长河,张彦彬,等. 微量润滑赋能雾化与供给系统关键技术研究进展[J]. 表面技术,2022,51(9):1-14. WANG Xiaoming,LI Changhe,ZHANG Yanbin,et al. Research progress on key technology of enabled atomization and supply system of minimum quantity lubrication[J]. Surface Technology,2022,51(9):1-14. [73] 施壮,郭树明,刘红军,等. 生物润滑剂微量润滑磨削GH4169镍基合金性能实验评价[J]. 表面技术,2021,50(12):71-84. SHI Zhuang,GUO Shuming,LIU Hongjun,et al. Experimental evaluation of minimum quantity lubrication of biological lubricant on grinding properties of GH4169 nickel-base alloy[J]. Surface Technology,2021,50(12):71-84. [74] 贾东洲,李长河,张彦彬,等. 钛合金生物润滑剂电牵引磨削性能及表面形貌评价[J]. 机械工程学报,2022,58(5):198-211. JIA Dongzhou,LI Changhe,ZHANG Yanbin,et al. Grinding performance and surface morphology evaluation of titanium alloy using electric traction bio micro lubricant[J]. Journal of Mechanical Engineering,2022,58(5):198-211. [75] 许文昊,李长河,张彦彬,等. 静电雾化微量润滑研究进展与应用[J]. 机械工程学报,2023,59(7):110-138. XU Wenhao,LI Changhe,ZHANG Yanbin,et al. Research progress and application of electrostatic atomization minimum quantity lubrication[J]. Journal of Mechanical Engineering,2023,59(7):110-138. [76] 吴喜峰,许文昊,马浩,等. 静电雾化机理及微量润滑铣削7075铝合金表面质量评价[J]. 表面技术,2023,52(6):337-350. WU Xifeng,XU Wenhao,MA Hao,et al. Mechanism and evaluation of surface quality of electrostatic minimum quantity lubrication milling 7075 aluminum alloy[J]. Surface Technology,2023,52(6):337-350. [77] 贾东洲,张乃庆,刘波,等. 静电雾化微量润滑粒径分布特性与磨削表面质量评价[J]. 金刚石与磨料磨具工程,2021,41(3):89-95. JIA Dongzhou,ZHANG Naiqing,LIU Bo,et al. Particle size distribution characteristics of electrostatic minimum quantity lubrication and grinding surface quality evaluation[J]. Diamond and Abrasives Engineering,2021,41(3):89-95. [78] BOGDAN W. KRUSZYŃSKI,MIDERA S,KACZMAREK J. Forces in generating gear grinding-theoretical and experimental approach[J]. CIRP Annals-Manufacturing Technology,1998,47(1):287-290. [79] 唐进元,杜晋,陈勇平. 齿轮磨削中磨削力数学模型的研究[J]. 制造技术与机床,2008(1):73-76. TANG Jinyuan,DU Jin,CHEN Yongping. Research on the mathematical model of grinding force in gear grinding[J] Manufacturing Technology and Machine Tool,2008(1):73-76. [80] BRECHER C,BRUMM M,HÜBNER F. Approach for the calculation of cutting forces in generating gear grinding[C]//9th CIRP Conference on Intelligent Computation In Manufacturing Engineering,2015,33:287-292. [81] 朱鹏飞,任小中. 成形法磨齿加工中切向磨削力的试验研究[J]. 金刚石与磨料磨具工程,2013,33(4):74-77. ZHU Pengfei,REN Xiaozhong. Experimental research on tangential grinding force of gear from grinding[J] Diamond and Abrasives Engineering,2013,33(4):74-77. [82] BERGS T. Cutting force model for gear honing[J]. CIRP Annals-Manufacturing Technology,2018,67(1):53-56. [83] 蔡卫星,周伟华,张峰. 21NiCrMo5H齿轮钢超声磨削力建模研究[J]. 现代制造工程,2020,475(4):113-118. CAI Weixing,ZHOU Weihua,ZHANG Feng. Research on the grinding force model of ultrasonic grinding for 21NiCrMo5H[J]. Modern Manufacturing Engineering,2020,475(4):113-118. [84] YIN L,ZHAO B,HUO B,et al. Analytical modeling of grinding force and experimental study on ultrasonic-assisted forming grinding gear[J]. International Journal of Advanced Manufacturing Technology,2021,114(11-12):3657-3673. [85] YANG,S Y,LIANG R J,CHEN W F,et al. Modelling and experiment for grinding forces of gear form grinding considering complete tooth depth engagement[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture,2022,236(13):1738-1750. [86] THANEDAR A,DONGRE G,JOSHI S. Analytical modelling of temperature in cylindrical grinding to predict grinding burns[J]. International Journal of Precision Engineering and Manufacturing,2019,20(1):13-25. [87] 余晟,温俊,唐进元. 直齿轮成形磨削齿面残余应力计算与实验验证[J]. 机械传动,2020,44(5):73-77. YU Sheng,WEN Jun,TANG Jinyuan. Calculation and experimental verification of residual stress of tooth surface in spur gear form grinding[J] Journal of Mechanical Transmission,2020,44(5):73-77. [88] 王延忠,刘旸,王段,等. 基于烧伤控制的18CrNi4A材料齿轮磨削工艺研究[J]. 北京理工大学学报,2018,38(3):235-240. WANG Yanzhong,LIU Yang,WANG Duan,et al. Research on gear gridding process of material 18CrNi4A based on burn control[J]. Transactions of Beijing Institute of Technology,2018,38(3):235-240. [89] 李岩. 基于Gr10CrNi3Mo材料航空齿轮磨削烧伤的有限元分析与烧伤预测研究[J]. 中国科技信息,2019,609(14):40-43. LI Yan. Finite element analysis and burn prediction of aviation gear grinding based on Gr10CrNi3Mo material[J] China Science and Technology Information,2019,609(14):40-43. [90] BOGDAN W,KRUSZIŃSKI,NAWARA L. Model of gear-grinding process[J]. CIRP Annals-Manufacturing Technology,1995,44(1):321-324. [91] MAYER J E,PURUSHOTHAMAN G,GOPALAKRISHNAN S. Model of grinding thermal damage for precision gear materials[J]. CIRP Annals- Manufacturing Technology,1999,48(1):251-254. [92] KARPUSCHEWSKI B,KNOCHE H J,HIPKE M. Gear finishing by abrasive processes[J]. CIRP Annals- Manufacturing Technology,2008,57(2):621-640. [93] 刘明政,李长河,曹华军,等. 低温微量润滑加工技术研究进展与应用[J]. 中国机械工程,2022,33(5):529-550. LIU Mingzheng,LI Changhe,CAO Huajun,et al. Research progress and application of cryogenic minimum quantity lubrication machining technology[J]. China Mechanical Engineering,2022,33(5):529-550. [94] 高腾,李长河,张彦彬,等. 纳米增强生物润滑剂CFRP材料去除力学行为与磨削力预测模型[J]. 机械工程学报,2023,59(13):325-342. GAO Teng,LI Changhe,ZHANG Yanbin,et al. Mechanical behavior of material removal and predictive force model for cfrp grinding using nano reinforced biological lubricant[J]. Journal of Mechanical Engineering,2023,59(13):325-342. [95] KIZAKI T,TAKAHASHI K,KATSUMA T,et al. Prospects of dry continuous generating grinding based on specific energy requirement[J]. Journal of Manufacturing Processes,2021,61:190-207. [96] GUO C,CAMPOMANES M,MCINTOSH D,et al. Optimization of continuous dress creep-feed form grinding process[J]. CIRP Annals-Manufacturing Technology,2003,52(1):259-262. [97] WANG Z,LI Y,YU T,et al. Prediction of 3D grinding temperature field based on meshless method considering infinite element[J]. International Journal of Advanced Manufacturing Technology,2019,100(9-12):3067-3084. [98] JIAN X,QING X,DENG,et al. Numerical simulation and experimental analysis of temperature field of gear form grinding[J]. International Journal of Advanced Manufacturing Technology,2018,97(5-8):2351-2367. [99] SKURATOV,D L,FEDOROV D G. Temperature fields in grinding by abrasive wheels[J]. Russian Engineering Research,2017,37(6):557-560. [100] WANG X,YU T B,SUN X,et al.,Study of 3D grinding temperature field based on finite difference method:Considering machining parameters and energy partition[J]. International Journal of Advanced Manufacturing Technology,2016,84(5-8):915-927. [101] YI J,JIN T,DENG Z. The temperature field study on the three-dimensional surface moving heat source model in involute gear form grinding[J]. International Journal of Advanced Manufacturing Technology,2019,103(5-8):3097-3108. [102] JIN,T,YI J,LI P. Temperature distributions in form grinding of involute gears[J]. International Journal of Advanced Manufacturing Technology,2017,88(9-12):2609-2620. [103] SU,J,ZHANG Y,DENG X. Analysis and experimental study of cycloid gear form grinding temperature field[J]. International Journal of Advanced Manufacturing Technology,2020,110(3-4):949-965. [104] SADAT A B,BAILEY J A. Residual stresses in turned AISI 4340 steel[J]. Experimental Mechanics,1987,27(1):80-85. [105] MAMALIS A G,KUNDRAK J,GYANI K. On the dry machining of steel surfaces using superhard tools[J]. International Journal of Advanced Manufacturing Technology,2002,19(3):157-162. [106] THIELE J D,MELKOTE S N,PEASCOE R A,et al. Effect of cutting-edge geometry and workpiece hardness on surface residual stresses in finish hard turning of AISI 52100 steel[J]. Journal of Manufacturing Science and Engineering,1999,122(04):642-649. [107] BALART M J,BOUZINA A,EDWARDS L,et al. The onset of tensile residual stresses in grinding of hardened steels[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2004,367(1-2):132-142. [108] 梁志强,黄迪青,周天丰,等. 螺旋伞齿轮磨削残余应力分布规律及仿真分析[J]. 机械工程学报,2018,54(21):183-190. LIANG Zhiqiang,HUANG Diqing,ZHOU Tianfeng,et al. Distribution characteristic and simulation analysis on grinding residual stress of spiral bevel gears[J]. Journal of Mechanical Engineering,2018,54(21):183-190. [109] ZHAO B,GUO X C,BIE W B,et al.Thermo-mechanical coupling effect on surface residual stress during ultrasonic vibration-assisted forming grinding gear[J]. Journal of Manufacturing Processes,2020. 59:19-32. [110] 易军,龚志锋,易涛,等. 齿根过渡圆弧对全齿槽成形磨削温度和残余应力影响的研究[J]. 中国机械工程,2022,33(11):1278-1286. YI Jun,GONG Zhifeng,YI Tao,et al. Study on effects of tooth root transition arc on grinding temperature and residual stress during full tooth groove profile grinding[J] China Mechanical Engineering,2022,33(11):1278-1286. [111] XU L Y,FENG S C,GUO,SY,et al. Simulation analysis of temperature field and stress-strain in form grinding of cycloidal gear[C]//2022 12th International Conference on CYBER Technology in Automation,Control,and Intelligent Systems (CYBER),2022,162-167. [112] 刘彦臣,庞思勤,王西彬,等. 表面完整性对高强度钢疲劳寿命影响的试验研究[J]. 兵工学报,2013,34(6):759-764. LIU Yanchen,PANG Siqin,WANG Xibin,et al. Experimental study on effect of surface integrity on high-strength steel fatigue life[J]. Acta Armamentarii,2013,34(6):759-764. [113] 陈东祥,田延岭. 超精密磨削加工表面形貌建模与仿真方法[J]. 机械工程学报,2010,46(13):186-191. CHEN Dongxiang,TIAN Yanling. Modeling and simulation methodology of the machined surface in ultra-precision grinding[J] Journal of Mechanical Engineering,2010,46(13):186-191. [114] NOVOVIC D,DEWES R C,ASPINWALL D K,et al. The effect of machined topography and integrity on fatigue life[J]. International Journal of Machine Tools and Manufacture,2004,44(2-3):125-134. [115] DING H,WAN G,ZHOU Y,et al. Nonlinearity analysis based algorithm for indentifying machine settings in the tooth flank topography correction for hypoid gears[J]. Mechanism and Machine Theory,2017,113:1-21. [116] HAN D,TANG J,ZHOU Y,et al. A multi-objective correction of machine settings considering loaded tooth contact performance in spiral bevel gears by nonlinear interval number optimization[J]. Mechanism and Machine Theory,2017,113:85-108. [117] ZHANG S,ZHANG G,RAN Y,et al. Multi-objective optimization for grinding parameters of 20CrMnTiH gear with ceramic microcrystalline corundum[J]. Materials,2019,12(8):1352. [118] 梁志强,黄迪青,周天丰,等.螺旋伞齿轮磨削表面形貌仿真与试验研究[J]. 机械工程学报,2019,55(3):191-198. LIANG Zhiqiang,HUANG Diqing,ZHOU Tianfeng,et al. Simulation and experimental research on grinding surface topography of spiral bevel gear[J] Journal of Mechanical Engineering,2019,55(3):191-198. [119] MING X Z,YAN H Z,HE G Q,et al. Experiment study on micro-hardness and structure of NC grinding surface layer of spiral bevel gears[J]. Applied Mechanics and Materials,2011,127:60-568. [120] WANG L,TIAN X,LIU Q,et al. Surface integrity analysis of 20CrMnTi steel gears machined using the WD-201 microcrystal corundum grinding wheel[J]. International Journal of Advanced Manufacturing Technology,2017,93(5-8):2903-2912. [121] WANG W,LIU H,ZHU C,et al. Evaluation of contact fatigue risk of a carburized gear considering gradients of mechanical properties[J]. Friction,2020,8(6):1039-1050. [122] 许鸿翔,王红伟,蒲江涌,等. 20Cr2Ni4钢渗碳淬火弧齿锥齿轮磨削烧伤的检测与分析[J]. 金属热处理,2022,47(11):271-275. XU Hongxiang,WANG Hongwei,PU Jiangyong,et al. Detection and analysis of grinding burns of 20Cr2Ni4 steel carburized and quenched spiral bevel gears[J]. Heat Treatment of Metals,2022,47(11):271-275. [123] HUANG X,ZHOU Z,REN Y,et al. Experimental research material characteristics effect on white layers formation in grinding of hardened steel[J]. The International Journal of Advanced Manufacturing Technology,2013,66(9-12):1555-1561. [124] YI J,YI T,GUO ZF,et al. Analytical modeling and experimental verification of the depth of subsurface heat-affected layer in gear profile grinding[J]. The International Journal of Advanced Manufacturing Technology,2022,121(5-6):4141-4152. [125] WEN,J,TANG,JY,SHAO,W,et al. Towards understanding subsurface characteristics in burn process of gear profile grinding[J]. Materials,2023,16(6):2493. [126] 庞桂兵,阿达依·谢尔亚孜旦,徐文骥,等. 展成式电化学机械光整加工圆柱齿轮的齿面质量与精度特性[J]. 机械工程学报,2011,47(19):163-167. PANG Guibing,ADAI Sheryazidan,XU Wenji,et al. Surface quality and accuracy characteristics of cylindrical gears by generative electrochemical- mechanical finishing[J]. Journal of Mechanical Engineering,2011,47(19):163-167. [127] SHAIKH,J H,JAIN N K. Modeling of material removal rate and surface roughness in finishing of bevel gears by electrochemical honing process[J]. Journal of Materials Processing Technology,2014,214(2):200-209. [128] SINGH H,JAIN,P K. Study on ultrasonic-assisted electrochemical honing of bevel gears[J]. Proceedings of the Institution of Mechanical Engineers,Part B-Journal of Engineering Manufacture,2018,232(4):705-712. [129] 鲍志军. 小模数齿轮激光熔覆修复工艺试验研究[D]. 上海:海事大学,2007. BAO Zhijun. Experimental Study on Laser Cladding Repair Technology for Small Module Gears[D]. Shanghai:Maritime University,2007. [130] 王志坚. 装备零件激光再制造成形零件几何特征及成形精度控制研究[D]. 广州:华南理工大学,2011. WANG Zhijian. Research on geometric characteristics and shaping control of formed structure in laser remanufacturing Equipment Parts[D]. Guangzhou:South China University of Technology,2011. [131] 陈犧. 采煤机大齿轮的激光熔覆再制造关键技术研究[D]. 哈尔滨:哈尔滨工业大学,2015. CHEN Xiang. Research on key technologies for laser cladding and remanufacturing of large gears in coal mining machines[D]. Harbin:Harbin Institute of Technology,2015. [132] 刘干成,黄博. 小模数齿轮齿面双道激光熔覆工艺[J]. 中国激光,2019,46(10):163-173. LIU Gancheng,HUANG Bo. Double-pass laser cladding process for small-modulus gear-tooth surface[J]. Chinese Journal of Lasers,2019,46(10):163-173. [133] HU Z,HONG L,WU G. Numerical simulation of curved surface of gear in laser cladding[J]. High-Power Lasers and Applications V,2010,7843:166-174. [134] WEI A G,TANG Y,TONG T,et al. Effect of WC on microstructure and wear resistance of fe-based coating fabricated by laser cladding[J]. Coatings,2022,12(8):1209. [135] CAO Y,ZHU Y,DING W,et al. Vibration coupling effects and machining behavior of ultrasonic vibration plate device for creep-feed grinding of Inconel 718 nickel-based superalloy[J]. Chinese Journal of Aeronautics,2022,35(2):332-345. [136] SUZUKI H,MARSHALL M,SIMS N,et al. Design and implementation of a non-resonant vibration-assisted machining device to create bespoke surface textures[J]. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science,2017,231(5):860-875. [137] VENKATESH G,SHARMA A K,KUMAR P. On ultrasonic assisted abrasive flow finishing of bevel gears[J]. International Journal of Machine Tools and Manufacture,2015,89:29-38. [138] BIE W,ZHAO B,ZHAO C,et al. System Design and experimental research on the tangential ultrasonic vibration-assisted grinding gear[J]. International Journal of Advanced Manufacturing Technology,2021,116(1-2):597-610. [139] ZHAO J,ZHAO B,HAN M,et al. Grinding characteristics of ultra-high strength steel by ultrasonic vibration-assisted grinding with microcrystalline alumina wheel[J]. International Journal of Advanced Manufacturing Technology,2022. https://doi.org/10.1007/s00170-022-10768-1. |
[1] | YIN Zhen, ZHANG Kun, DAI Chenwei, CHENG Jingcai, XUN Hailong, LI Hua. Research on Wheel Wear and Grinding Performance of Elliptical Ultrasonic Vibration Assisted Grinding SiC Ceramics [J]. Journal of Mechanical Engineering, 2024, 60(9): 57-74. |
[2] | XIAO Guijian, LIU Zhenyang, HE Yi, LIU Gang, DENG Zhongcai. Laser-assisted CBN Belt Grinding of TC4 Titanium Alloy for Material Removal Behavior and Surface Integrity Study [J]. Journal of Mechanical Engineering, 2024, 60(9): 241-253. |
[3] | HE Zhe, HUANG Xinchun, SONG Yihui, SHI Yaoyao, ZHANG Zhaoqing, SHI Kaining. Study on the Evolution of Surface Integrity of DD6 Single Crystal Super Alloy by Grinding Shot Peening Based on the Effect of Service Temperature [J]. Journal of Mechanical Engineering, 2024, 60(9): 410-420. |
[4] | WANG Pai, BAI Yifan, ZHAO Wenxiang, ZHANG Yibo, LIU Zhibing. Research on Surface Integrity Evolution of Short Arc Assisted Milling of Superalloy [J]. Journal of Mechanical Engineering, 2024, 60(9): 434-444. |
[5] | WU Jizhan, WEI Peitang, WU Shaojie, LIU Huaiju, ZHU Caichao. Rolling Contact Fatigue Performance Prediction and Surface Integrity Optimization of Aviation Gear Steel [J]. Journal of Mechanical Engineering, 2024, 60(8): 81-93. |
[6] | CHEN Shouan, XIAO Ke, CHENG Gong, HAN Yanfeng. Friction and Contact Properties of Tooth Surfaces Considering Surface Topography under Mixed Lubrication [J]. Journal of Mechanical Engineering, 2024, 60(7): 184-194. |
[7] | WEI Jing, LIU Zhirou, WEI Haibo, XU Ziyang. Time-space Transformation Method of Vibration Displacement and Dynamic Strain in Nodal-diameter Vibration of High-speed Thin-walled Gear [J]. Journal of Mechanical Engineering, 2024, 60(5): 70-80. |
[8] | WEI Yongqiao, ZHANG Jin, WANG Shaojiang, QI Xiaohu, GUO Rui, YANG Haijiang. Wear and Sensitivity Analysis of Transmission Interface of Cylindrical Gear with Variable Hyperbolic Circular-arc-tooth-trace [J]. Journal of Mechanical Engineering, 2024, 60(5): 81-94. |
[9] | SHAO Haidong, LIN Jian, MIN Zhishan, MING Yuhang. Improved Semi-supervised Prototype Network for Cross-domain Fault Diagnosis of Gearbox under Out-of-distribution Interference Samples [J]. Journal of Mechanical Engineering, 2024, 60(4): 212-221. |
[10] | WU Jizhan, WEI Peitang, LIU Huaiju, WU Shaojie, ZHU Caichao. Study on the Correlation between Surface Integrity and Rolling Contact Fatigue Performance of Aviation Gear Steel [J]. Journal of Mechanical Engineering, 2024, 60(4): 284-295. |
[11] | LIU Huaiju, CHEN Difa, ZHU Caichao, WU Jizan, WEI Peitang. State-of-art and Trend of Gear Bending Fatigue Studies [J]. Journal of Mechanical Engineering, 2024, 60(3): 83-108. |
[12] | LEI Zhen, JIANG Hong, ZHANG Xiangfeng, LI Jun, KONG Yiyi, BAI Yu. Evolutionary Analysis of Tooth Cracks in Planetary Gear Systems [J]. Journal of Mechanical Engineering, 2024, 60(19): 101-115. |
[13] | ZHU Yongchao, ZHU Caichao, TAN Jianjun, RAN Feng, SONG Chaosheng. Health Status Prediction of Wind Turbine Gearbox Cluster Considering Data Distribution Discrepancy [J]. Journal of Mechanical Engineering, 2024, 60(18): 64-75. |
[14] | DAI He, LUO Shunan, LONG Xinhua, LI Yuan, ZI Bin. Mesh Phasing Variation of Planetary Gears Induced by Gear Pinhole Position Errors and Its Statistical Characteristics Prediction [J]. Journal of Mechanical Engineering, 2024, 60(15): 123-133. |
[15] | CAO Jie, REN Zunsong, ZHA Hao, XU Ning, YANG Chao. Load Characteristics of Gearbox Bearing of High-speed EMU [J]. Journal of Mechanical Engineering, 2024, 60(15): 173-184. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||