[1] LEE C,CHOI Y,HA J,et al. Eco-friendly technology for recycling of cutting fluids and metal chips:A review[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2017,4(4):457-468. [2] KIM H,SIM J,KWEON H. Performance evaluation of chip breaker utilizing neural network[J]. Journal of Materials Processing Technology,2009,209(2):647-656. [3] BUCHKREMER S,KLOCKE F,VESELOVAC D. 3D FEM simulation of chip breakage in metal cutting[J]. International Journal of Advanced Manufacturing Technology,2016,82(1-4):645-661. [4] FANG N,WU Q. Impulsive chip breaking in metal machining:A proof-of-concept study[J]. Machining Science and Technology,2006,10(2):251-262. [5] SHAMOTO E,AOKI T,SENCER B,et al. Control of chip flow with guide grooves for continuous chip disposal and chip-pulling turning[J]. CIRP Annals,2011,60(1):125-128. [6] 郭江,王兴宇,赵勇,等. 微织构刀具制备技术及加工性能研究新进展[J]. 机械工程学报,2021,57(13):172-200. GUO Jiang,WANG Xingyu,ZHAO Yong,et al. Recent progress on fabrication technologies and machining performance of textured cutting tools[J]. Journal of Mechanical Engineering,2021,57(13):172-200. [7] GRUBY S,LASUKOV A,NEKRASOV R,et al. Controlling the type and the form of chip when machining steel[C]//IOP Conference Series:Materials Science and Engineering,2016,142(1):12065. [8] 吴明阳,赵旭,陈勇,等. 高压冷却下PCBN刀具切削高温合金切屑卷曲折断机理及试验研究[J]. 机械工程学报,2017,53(9):187-192. WU Mingyang,ZHAO Xu,CHEN Yong,et al. Reaserch on mechanism and experimental of chip breaking during high pressure cooling turning of superalloys with PCBN tool[J]. Journal of Mechanical Engineering,2017,53(9):187-192. [9] BUCHKREMER S,KLOCKE F,LUNG D. Analytical study on the relationship between chip geometry and equivalent strain distribution on the free surface of chips in metal cutting[J]. International Journal of Mechanical Sciences,2014,85:88-103. [10] NAKAYAMA K. A study on chip-breaker[J]. Bulletin of JSME,1962,5(17):142-150. [11] ZHANG Y,PEKLENIK J. Chip curl,chip breaking and chip control of the difficult-to-cut materials[J]. CIRP Annals,1980,29(1):79-83. [12] 李振加,杨永芝,刘献礼. 精加工刀片槽型的研究:解决小切深小进给的断屑问题[J]. 工具技术,1990(11):29-33. LI Zhenjia,YANG Yongzhi,LIU Xianli. Research on the groove of finishing cutting tool:Solving the chip breaking problem in small cutting depth and feed[J]. Tool Engineering,1990(11):29-33. [13] 张中民,李振加,郑敏利, 等. 切屑折断界限的理论研究[J]. 机械工程学报,2002,38(8):74-79. ZHANG Zhongmin,LI Zhenjia,ZHENG Limin,et al. Theoretical study on chip breaking limit[J]. Journal of Mechanical Engineering,2002,38(8):74-79. [14] LOTFI M,AKHAVAN FARID A,SOLEIMANIMEHR H. The effect of chip breaker geometry on chip shape,bending moment,and cutting force:FE analysis and experimental study[J]. International Journal of Advanced Manufacturing Technology,2015,78(5-8):917-925. [15] FANG N. Influence of the geometrical parameters of the chip groove on chip breaking performance using new-style chip formers[J]. Journal of Materials Processing Technology,1998,74(1):268-275. [16] UKAR E,ARRIZUBIETA J,RUIZ J,et al. Laser engraving of chip-breaker geometry on ceramic cutting tools[C]//IOP Conference Series. Materials Science and Engineering,2021,1193(1):12025. [17] YU X,WANG Y,LV D. A novel chip breaker structure of PCD tool for the reaming of 7050 aluminum alloy[J]. International Journal of Advanced Manufacturing Technology,2020,109(3-4):659-672. [18] KUO R,WANG J,LEE R. Effect of insert groove geometry on chip breaking performance[J]. Journal of Mechanics,2018,34(1):67-73. [19] WU L,LIU J,REN Y,et al. 3D FEM simulation of chip breakage in turning AISI1045 with complicate-grooved insert[J]. International Journal of Advanced Manufacturing Technology,2020,108(5-6):1331-1341. [20] 刘亚俊,夏伟. 切屑卷曲模型及其控制参数的研究[J]. 工具技术,2001(2):6-8. LIU Yajun,XIA Wei. Research on chip model and its control parameters[J]. Tool Engineering,2001(2):1331-1341. [21] SHARMA V,PANDEY P. Comparative study of turning of 4340 hardened steel with hybrid textured self-lubricating cutting inserts[J]. Materials and Manufacturing Processes,2016,31(14):1904-1916. [22] OBIKAWA T,KAMIO A,TAKAOKA H,et al. Micro-texture at the coated tool face for high performance cutting[J]. International Journal of Machine Tools & Manufacture,2011,51(12):966-972. [23] SUGIHARA T,ENOMOTO T,YUKINAGA S. Improving tool wear resistance in steel cutting by textured surface and its mechanism[J]. Advances in abrasive technology xv. Durnten-zurich:Trans Tech Publications Ltd,2012,565:424-429. [24] XIE J,LUO M,WU K,et al. Experimental study on cutting temperature and cutting force in dry turning of titanium alloy using a non-coated micro-grooved tool[J]. International Journal of Machine Tools & Manufacture,2013,73:25-36. [25] KOSHY P,TOVEY J. Performance of electrical discharge textured cutting tools[J]. CIRP Annals,2011,60(1):153-156. [26] MA J,DUONG N,LEI S. Numerical investigation of the performance of microbump textured cutting tool in dry machining of AISI 1045 steel[J]. Journal of Manufacturing Processes,2015,19:194-204. [27] KIM D,LEE I,KIM S,et al. Influence of a micropatterned insert on characteristics of the tool-workpiece interface in a hard turning process[J]. Journal of Materials Processing Technology,2016,229:160-171. [28] DINESH S,SENTHILKUMAR V,ASOKAN P. Experimental studies on the cryogenic machining of biodegradable ZK60 Mg alloy using micro-textured tools[J]. Materials and Manufacturing Processes,2017,32(9):979-987. [29] VILHENA L,SEDLAČEK M,PODGORNIK B,et al. Surface texturing by pulsed Nd:YAG laser[J]. Tribology International,2009,42:1496-1504. [30] FATIMA A,MATIVENGA P. A comparative study on cutting performance of rake-flank face structured cutting tool in orthogonal cutting of AISI/SAE 4140[J]. International Journal of Advanced Manufacturing Technology,2015,78(9-12):2097-2106. [31] ZHANG K,DENG J,MENG R,et al. Effect of nano-scale textures on cutting performance of WC/Co-based Ti55Al45N coated tools in dry cutting[J]. International Journal of Refractory Metals & Hard Materials,2015,51:35-49. [32] WANG Z,LI Y,BAI F,et al. Angle-dependent lubricated tribological properties of stainless steel by femtosecond laser surface texturing[J]. Optics and Laser Technology,2016,81:60-66. [33] ARULKIRUBAKARAN D,SENTHILKUMAR V,KUMAWAT V. Effect of micro-textured tools on machining of Ti-6Al-4V alloy:An experimental and numerical approach[J]. International Journal of Refractory Metals & Hard Materials,2016,54:165-177. [34] RATHOD P,ARAVINDAN S,PARUCHURI. Evaluating the effectiveness of the novel surface textured tools in enhancing the machinability of titanium alloy (Ti6Al4V)[J]. Journal of Advanced Mechanical Design,Systems,and Manufacturing,2015,9(3):JAMDSM0035. [35] VASUMATHY D,MEENA A. Influence of micro scale textured tools on tribological properties at tool-chip interface in turning AISI 316 austenitic stainless steel[J]. Wear,2017,376-377(PB):1747-1758. [36] DARSHAN C,JAIN S,DOGRA M,et al. Machinability improvement in Inconel-718 by enhanced tribological and thermal environment using textured tool[J]. Journal of Thermal Analysis And Calorimetry,2019,138(1):273-285. [37] PANG M,NIE Y,MA L. Effect of symmetrical conical micro-grooved texture on tool-chip friction property of WC-TiC/Co cemented carbide tools[J]. International Journal of Advanced Manufacturing Technology,2018,99(1-4):737-746. [38] NANDY A,GOWRISHANKAR M,PAUL S. Some studies on high-pressure cooling in turning of Ti-6Al-4V[J]. International Journal of Machine Tools & Manufacture,2009,49(2):182-198. [39] DILIP JEROLD B,PRADEEP KUMAR M. Experimental comparison of carbon-dioxide and liquid nitrogen cryogenic coolants in turning of AISI 1045 steel[J]. Cryogenics (Guildford),2012,52(10):569-574. [40] BERMINGHAM M,KIRSCH J,SUN S,et al. New observations on tool life,cutting forces and chip morphology in cryogenic machining Ti-6Al-4V[J]. International Journal of Machine Tools & Manufacture,2011,51(6):500-511. [41] SALIMINIA A,ABOOTORABI M. Experimental investigation of surface roughness and cutting ratio in a spraying cryogenic turning process[J]. Machining Science And Technology,2019,23(5):779-793. [42] COURBON C,KRAMAR D,KRAJNIK P,et al. Investigation of machining performance in high-pressure jet assisted turning of Inconel 718:An experimental study[J]. International Journal of Machine Tools & Manufacture,2009,49(14):1114-1125. [43] MOHSAN A,LIU Z,REN X,et al. Influences of cutting fluid conditions and cutting parameters on surface integrity of Inconel 718 under high-pressure jet-assisted machining (HPJAM)[J]. Lubrication Science,2018,30(6):269-284. [44] SEID AHMED Y,PAIVA J,VELDHUIS S. Characterization and prediction of chip formation dynamics in machining austenitic stainless steel through supply of a high-pressure coolant[J]. International Journal of Advanced Manufacturing Technology,2019,102(5-8):1671-1688. [45] MAZURKIEWICZ M,KUBALA Z,CHOW J. Metal machining with high-pressure water-jet cooling assistance-A new possibility[J]. Journal of Engineering for Industry,1989,111(1):7-12. [46] HABAK M, LEBRUN J. An experimental study of the effect of high-pressure water jet assisted turning (HPWJAT) on the surface integrity[J]. International Journal of Machine Tools & Manufacture,2011,51(9):661-669. [47] BRAHAM-BOUCHNAK T,GERMAIN G,ROBERT P,LEBRUN JL. High pressure water jet assisted machining of duplex steel:machinability and tool life[J]. International Journal of Material Forming,2010,3(1):507-510. [48] DAHLMAN,P,ESCURSELL M. High-pressure jet-assisted cooling:A new possibility for near net shape turning of decarburized steel[J]. International Journal of Machine Tools & Manufacture,2004,44(1):109-115. [49] SPLETTSTOESSER A,SCHRAKNEPPER D,BERGS T. Influence of the frequency of pulsating high-pressure cutting fluid jets on the resulting chip length and surface finish[J]. International Journal of Advanced Manufacturing Technology,2021,117(7-8):2185-2196. [50] CICA D,KRAMAR D. Multi-objective optimization of high-pressure jet-assisted turning of inconel 718[J]. International Journal of Advanced Manufacturing Technology,2019,105(11):4731-4745. [51] LEE Y,YANG S,CHANG S. Assessment of chip-breaking characteristics using new chip-breaking index[J]. Journal of Materials Processing Technology,2006,173(2):166-171. [52] COROMANT S,Modern metal cutting,a practical handbook[M]. Cincinnati:Gardner Business Media Inc,1998,70(10):B3. [53] PACELLA M. A new low-feed chip breaking tool and its effect on chip morphology[J]. International Journal of Advanced Manufacturing Technology,2019,104(1-4):1145-1157. [54] SŁODKI B,ZĘBALA W,STRUZIKIEWICZ G. Correlation between cutting data selection and chip form in stainless steel turning[J]. Machining Science and Technology,2015,19(2):217-235. [55] ZAMRI M,YUSOFF A. Effect of rake angle and feed rate on chip segmentation in machining carbon steel 1050[C]. International Conference on Recent Advances in Industrial Engineering and Manufacturing,2019,530(1):12011. [56] MERCHANT M E. Mechanics of the metal cutting process. I. orthogonal cutting and a type 2 chip[J]. Journal of Applied Physics,1945,16(5):267-275. [57] MERCHANT M E. Mechanics of the metal cutting process. II. plasticity conditions in orthogonal cutting[J]. Journal of Applied Physics,1945,16(6):318-324. [58] LIU X,DEVOR R,KAPOOR,et al. The mechanics of machining at the microscale:Assessment of the current state of the science[J]. Journal of Manufacturing Science and Engineering,2004,126(4):666-678. [59] RAHMAN M,BHUIYAN M,SHARMA S,et al. Influence of feed rate response (FRR) on chip formation in micro and macro machining of al alloy[J]. Metals (Basel),2021,11(1):1-21. [60] KUMAR A,MAHAPATRA M,JHA P. Effect of machining parameters on cutting force and surface roughness of in situ Al-4.5%Cu/TiC metal matrix composites[J]. Measurement:Journal of the International Measurement Confederation,2014,48(1):325-332. [61] NOBEL C,HOFMANN U,KLOCKE F,et al. Experimental investigation of chip formation,flow,and breakage in free orthogonal cutting of copper-zinc alloys[J]. International Journal of Advanced Manufacturing Technology,2016,84(5-8):1127-1140. [62] LAAKSO S,HOKKA M,NIEMI E,et al. Investigation of the effect of different cutting parameters on chip formation of low-lead brass with experiments and simulations[J]. Proceedings of the Institution of Mechanical Engineers. Part B,Journal of Engineering Manufacture,2013,227(11):1620-1634. [63] WANG B,LIU Z,HOU X,et al. Influences of cutting speed and material mechanical properties on chip deformation and fracture during high-speed cutting of inconel 718[J]. Materials,2018,11(4):461. [64] ZHANG X,WU S,WANG H,et al. Predicting the effects of cutting parameters and tool geometry on hard turning process using finite element method[J]. Journal of Manufacturing Science and Engineering,2011,133(4):41010. [65] GAO C,ZHANG L. Effect of cutting conditions on the serrated chip formation in high-speed cutting[J]. Machining Science and Technology,2013,17(1):26-40. [66] 吴明阳,赵旭,计伟,等. PCBN刀具切削高温合金锯齿形切屑形成机理[J]. 机械工程学报,2016,52(3):179-186. WU Mingyang,ZHAO Xu,JI Wei,et al. Generation mechanism of saw-tooth chip in turning of GH4169 with PCBN tool[J]. Journal of Mechanical Engineering,2016,52(3):179-186. [67] SENCER B,MAULIMOV M. A new turning system assisted by chip-pulling[J]. Journal of Manufacturing Processes,2018,34:734-739. [68] WU M,YU A,CHEN Q,et al. Design of adjustable chip breaker for PCD turning tools[J]. International Journal of Mechanical Sciences,2020,172:10541 [69] GANAPATHI T. A study on the feasibility of universal chip control in machining[M]. ProQuest Dissertations Publishing,2011. [70] GULLU A,KARABULUT S. Dynamic chip breaker design for inconel 718 using positive angle tool holder[J]. Materials and Manufacturing Processes,2008,23(8):852-857. [71] YILMAZ B,KARABULUT S,GULLU A. Performance analysis of new external chip breaker for efficient machining of Inconel 718 and optimization of the cutting parameters[J]. Journal of Manufacturing Processes,2018,32:553-563. |