[1] PREDEHL P, RITSCHKE R, AREFIEV V, et al. The eROSITA X-ray telescope on SRG[J]. Astronomy & Astrophysics, 2021, 647:A1. [2] ZYLSTRA A, HURRICANE O, CALLAHAN D, et al. Burning plasma achieved in inertial fusion[J]. Nature, 2022, 601(7894):542-548. [3] 林尊琪. 激光核聚变的发展[J]. 中国激光, 2010, 37(9):2202-2207. LIN Zunqi. Progress of laser fusion[J]. Chinese Journal of Lasers, 2010, 37(9):2202-2207. [4] 麦振洪. 同步辐射发展六十年[J]. 科学, 2013, 65(6):16-21. MAI Zhenhong. 60 years of synchrotron radiation development[J]. Science, 2013, 65(6):16-21. [5] BARTOSZ B, DIRK J, PAUL G. EUV optics at ZEISS:Status and outlook[C]//Proc. SPIE, 2022, 12292:1229206. [6] NEGRES R, ABDULLA G, CROSS D, et al. Probability of growth of small damage sites on the exit surface of fused silica optics[J]. Optics Express, 2012, 20(12):13030-13039. [7] ABBAS R, VIBHU J. EUV mask defects and their removal[C]//Proc. SPIE, 2012, 8352:83520W. [8] 赵小明,蒋效雄,魏艳勇,等. 谐振陀螺仪与系统技术[M]. 北京:国防工业出版社, 2021. ZHAO Xiaoming, JIANG Xiaoxiong, WEI Yanyong, et al. Resonant gyroscope and system technology[M]. Beijing:National Defense Industry Press, 2021. [9] NATURA U, MARTIN R, GORDON V, et al. Kinetics of laser induced changes of characteristic optical properties in lithosil with 193 nm excimer laser exposure[C]//SPIE, 2005, 5754:1312-1319. [10] 郭东明. 高性能制造[J]. 机械工程学报, 2022, 58(21):225-242. GUO Dongming. High performance manufacturing[J]. Journal of Mechanical Engineering, 2022, 58(21):225-242. [11] 中国机械工程学会. 中国机械工程技术路线图[M]. 北京:机械工业出版社, 2021. Chinese Mechanical Engineering Society. China mechanical engineering technology roadmap[M]. Beijing:China Machine Press, 2021. [12] BISKACH M P, ALLGOOD K D, CHAN K W, et al. Mass manufacturing of high resolution and lightweight monocrystalline silicon X-ray mirror modules[C]//Proc. SPIE, 2019:111190C. [13] BRADLEY R M, SHIPMAN P D. A surface layer of altered composition can play a key role in nanoscale pattern formation induced by ion bombardment[J]. Applied Surface Science, 2012, 258:4161-4170. [14] MOEGGENBORG K, BARROS C, LESIAK S, et al. Low-scatter bare aluminum optics via chemical mechanical polishing[C]//Proc. SPIE. 2008, 7060:706002. [15] 邵建达,戴亚平,许乔. 惯性约束聚变激光驱动装置用光学元器件的研究进展[J]. 光学精密工程, 2016, 24(12):2889-2895. SHAO Jianda, DAI Yaping, XU Qiao. Progress of optical components for ICF laser facility[J]. Optics and Precision Engineering, 2016, 24(12):2889-2895. [16] 赵振堂,冯超. X射线自由电子激光[J]. 物理, 2018, 47(8):481-490. ZHAO Zhentang, FENG Chao. X-ray free electron laser[J]. Physics, 2018, 47(8):481-490. [17] SURATWALA T I, MILLER P E, BUDE J D, et al. HF-based etching processes for improving laser damage resistance of fused silica optical surfaces[J]. Journal of the American Ceramic Society, 2011, 94(2):416-428. [18] 石峰,舒勇,宋辞,等. 紫外熔石英元件高精度低缺陷控形控性制造技术研究进展[J]. 强激光与粒子束, 2020, 32(3):032002. SHI Feng, SHU Yong, SONG Ci, et al. Advances in shape controllable and property controllable manufacturing technology for ultraviolet fused silica components with high precision and few defects[J]. High Power Laser and Particle Beams, 2020, 32(3):032002. [19] MADER M, SCHLATTER O, HECK B, et al. High-throughput injection molding of transparent fused silica glass[J]. Science, 2021, 372(6538):182-186. [20] WANG C, WANG H, GAO R, et al. Experimental investigation on thermal healing of subsurface damage in borosilicate glass[J]. Ceramics International, 2021, 47(12):17128-17138. [21] FANG Fengzhou, ZHANG Nan, GUO Dongming. Towards atomic and close-to-atomic scale manufacturing[J]. International Journal of Extreme Manufacturing, 2019, 1(1):012001. [22] 袁哲俊,王先逵. 精密和超精密加工技术[M]. 北京:机械工业出版社, 2016. YUAN Zhejun, WANG Xiankui. Precision and ultraprecision machining technology[M]. Beijing:China Machine Press, 2016. [23] LIANG Yingchun, CHEN Wanqun, SUN Yazhou, et al. A mechanical structure-based design method and its implementation on a fly-cutting machine tool design[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(9):1915-1921. [24] 彭小强. 确定性磁流变抛光的关键技术研究[D]. 长沙:国防科学技术大学, 2004. PENG Xiaoqiang. Study on the key techniques of deterministic magnetorheological finishing[D]. Changsha:National University of Defense Technology, 2004. [25] 廖文林. 亚纳米精度光学表面离子束修形的基础研究[D]. 长沙:国防科学技术大学, 2015. LIAO Wenlin. Fundamental research on ion beam figuring for sub-nanometer precision optical surfaces[D]. Changsha:National University of Defense Technology, 2015. [26] YIN Lianmin, DAI Yifan, HU Hao, et al. Fluid lubricated polishing based on shear thickening[J]. Optics Express, 2023, 31(1):698-713. [27] 李圣怡,戴一帆,彭小强. 光学非球面镜可控柔体制造技术[M]. 长沙:国防科技大学出版社, 2015. LI Shengyi, DAI Yifan, PENG Xiaoqiang. Fabrication technology of optical aspheric mirror controllable flexible system[M]. Changsha:National University of Defense Technology Press, 2015. [28] DU Chunyang, DAI Yifan, GUAN Chaoliang, et al. High precision fabrication of aluminum optics by optimizing an Ar+ ion beam figuring strategy for polishing the contamination layer[J]. Optics Express, 2021, 29(18):28886-28900. [29] GUAN Chaoliang, DU Chunyang, DAI Yifan, et al. Ion beam figuring strategy for aluminum optics with minimal extra material removal[J]. Applied Optics, 2022, 61(13):3542-3549. [30] LI Changsheng, SUN Lin, YANG Shuming, et. al. Three-dimensional characterization and modeling of diamond electroplated grinding wheels[J]. International Journal of Mechanical Sciences, 2018(144):553-563. [31] ZHANG W, ALLGOOD K, BISKACH M, et al. Next generation X-ray optics for astronomy:High resolution, lightweight, and low cost[C]//SPIE, 2019:35-46. [32] ZHANG W, ALLGOOD K D, BISKACH M, et al. High-resolution, lightweight, and low-cost X-ray optics for the Lynx observatory[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2019, 5(2):021012. [33] RAUL E, MICHAEL P, KIM D, et al. Fabrication of lightweight silicon x-ray mirrors[C]//Proc. SPIE, 2022:222-229. [34] 李纪磊,雷炜炜,王卫英. 适用于薄壁件加工的真空柔 性夹 具设 计[J]. 机械 工程 与自 动化, 2016(4):133-135. LI Jilei, LEI Weiwei, WANG Weiying. Design of vacuum flexible fixture for thin-walled parts[J]. Mechanical Engineering & Automation, 2016(4):133-135. [35] 潘博,康仁科,贺增旭,等. 弱刚性构件磁流变抛光变形机理与抑制技术研究[J]. 中国机械工程, 2022, 33(18):2190-2196. PAN Bo, KANG Renke, HE Zengxu, et al. Investigation of deformation mechanism and suppression method of weak stiffness components by magnetorheological finishing[J]. China Mechanical Engineering, 2022, 33(18):2190-2196. [36] LIU Z, KANG R, LIU H, et al. FEM-based optimization approach to machining strategy for thin-walled parts made of hard and brittle materials[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(5-6):1399-1413. [37] PAN B, KANG R, GUO J, et al. Precision fabrication of thin-copper substrate by double-sided lapping and chemical mechanical polishing[J]. Journal of Manufacturing Processes, 2019, 44:47-54. [38] KLINE J, CALLAHAN D, GLENZER S, et al. Hohlraum energetics scaling to 520 TW on the National Ignition Facility[J]. Physics of Plasmas, 2013, 20(5):056314. [39] NICOLA J M, BOND T, BOWERS M, et al. The national ignition facility:Laser performance status and performance quad results at elevated energy[J]. Nuclear Fusion, 2019, 59(3):0320004. [40] ANDRÉ M. The french megajoule laser project (LMJ)[J]. Fusion Engineering & Design, 1999, 44(1-4):43-49. [41] 魏晓峰,郑万国,张小民. 中国高功率固体激光技术发展中的两次突破[J]. 物理, 2017, 47(2):73-83. WEI Xiaofeng, ZHENG Wanguo, ZHANG Xiaomin. Two breakthroughs in the development of high power solid-state laser technology in China[J]. Physics, 2017, 47(2):73-83. [42] 朱健强. 中国的神光-神光Ⅱ高功率激光实验装置[J]. 自然杂志, 2006(5):271-272. ZHU Jianqiang. Shenguang- Ⅱ:High power laser facility[J]. Chinese Journal of Nature, 2006(5):271-272. [43] LI Y, YE H, YUAN Z, et al. Generation of scratches and their effects on laser damage performance of silica glass[J]. Scientific Reports, 2016, 6:34818. [44] SURATWALA T, STEELE W, WONG L, et al. Chemistry and formation of the Beilby layer during polishing of fused silica glass[J]. Journal of the American Ceramic Society, 2015, 98(8):2395-2402. [45] HED P P, EDWARDS D F, DAVIS J B. Subsurface damage in optical materials:Origin, measurement and removal[C]//Optical Fabrication and Testing. Optica Publishing Group, 1988. [46] CARR C W, BUDE J D, DEMANGE P. Laser-supported solid-state absorption fronts in silica[J]. Physical Review B, 2010, 82(18):184304. [47] DEREURE C, HALL R, BABER F, et al. Laser induced dynamic fracture of fused silica:Experiments and simulations[J]. Journal of Non-Crystalline Solids, 2019, 511:125-139. [48] LI B, HOU C, TIAN C, et al. Layer by layer exposure of subsurface defects and laser-induced damage mechanism of fused silica[J]. Applied Surface Science, 2020, 508:145186. [49] PFIFFER M, CORMONT P, FARGIN E, et al. Effects of deep wet etching in HF/HNO3 and KOH solutions on the laser damage resistance and surface quality of fused silica optics at 351 nm[J]. Optics Express, 2017, 25(5):4607-4620. [50] ZHONG Yaoyu, SHI Feng, TIAN Ye, et al. Detailed near-surface nanoscale damage precursor measurement and characterization of fused silica optics assisted by ion beam etching.[J]. Optics Express, 2019, 27(8):10826-10838. [51] 徐明进. 强光元件离子束修形工艺与本征特性演变规律研究[D],长沙:国防科技大学, 2017. XU Mingjin. Research on ion beam figuring and intrinsic characteristic evolution of high power laser optics[D]. Changsha:National University of Defense Technology, 2017. [52] SUN L, HUANG J, SHAO T, et al. Effects of combined process of reactive ion etching and dynamic chemical etching on UV laser damage resistance and surface quality of fused silica optics[J]. Optics Express, 2018, 26(14):18006-18018. [53] LI B, XIANG X, LIAO W, et al. Improved laser induced damage thresholds of Ar ion implanted fused silica at different ion fluences[J]. Applied Surface Science, 2019, 471:786-794. [54] 李明,吴介立,吴永前,等. X射线反射镜研制技术的现状和发展[J]. 光电工程, 2020, 47(8):58-69. LI Ming, WU Jieli, WU Yongqian, et al. A review on the fabrication of X-ray reflector[J]. Opto-electronic Engineering, 2020, 47(8):58-69. [55] J-tec corporation, Optical product introduction[EB/OL]. https://www.j-tec.co.jp/english/optical/optical-products/. [56] MORI Y, YAMAUCHI K, HIROSE K, et al. Numerically controlled EEM(Elastic Emission Machining) system for ultraprecision figuring and smoothing of aspherical surfaces[M]. Norwich:John Wiley & Sons, Ltd, 2013. [57] YIN Lianmin, DAI Yifan, HU Hao, et al. Elastic emission polishing based on shear thickening slurry[C]//Seventh Asia Pacific Conference on Optics Manufacture and 2021 International Forum of Young Scientists on Advanced Optical Manufacturing(APCOM and YSAOM 2021), 2021. [58] MATSUMURA S, OSAKA T, INOUE I, et al. Highresolution micro channel-cut crystal monochromator processed by plasma chemical vaporization machining for a reflection self-seeded X-ray free-electron laser[J]. Optics Express, 2020, 28(18):25706-25715. [59] TAKASHI H, YUKI M, SHOTARO M, et al. Surface finishing method using plasma chemical vaporization machining for narrow channel walls of X-ray crystal monochromators[J]. International Journal of Automation Technology, 2019, 13(2):246-253. [60] HIDEKA K, DAISETSU T, BUI V, et al. High-efficiency planarization of SIC wafers by water-CARE (Catalystreferred etching) employing photoelectrochemical oxidation[J]. Materials Science Forum, 2019, 963:525-529. [61] DAISETSU T, BUI V, YASUHISA S. Photoelectrochemical oxidation assisted catalyst-referred etching for SiC (0001) surface[J]. International Journal of Automation Technology, 2021, 15(1):74-79. [62] YAMAUCHI K, YAMAMURA K, MIMURA H, et al. Fabrication technology of ultraprecise mirror optics to realize hard X-ray nanobeam[C]//Proc. SPIE, 2004, 5533:116-123. [63] SUSINI J, PAUSCHINGER D, GEYL R, et al. Hard X-ray mirror fabrication capabilities in Europe[J]. Optical Engineering, 1995, 34(2):388-395. [64] LI Yaguo, TAKINO H, FROST F. Ion beam planarization of diamond turned surfaces with various roughness profiles[J]. Optics Express, 2017, 25(7):7828-7838. [65] YIN Lianmin, LIN Zhifan, HU Hao, et al. Rapid polishing process for the X ray reflector[J]. Applied Optics, 2022, 61(27):7991-7998. [66] YIN Lianmin, HU Hao, GUAN Chaoliang, et al. Smooth polishing with non-linear compensation[J]. Optik, 2022, 262:169339. [67] 李勇. 高精度X射线反射镜加工关键技术研究[D]. 长沙:国防科技大学, 2017. LI Yong. Study on key processing technologies for high precision X-ray mirrors[D]. Changsha:National University of Defense Technology, 2017. |