[1] CARTER T J. Common failures in gas turbine blades[J]. Engineering Failure Analysis, 2005, 12(2):237-247. [2] BAI S, LI Y F, HUANG H Z, et al. A probabilistic combined high and low cycle fatigue life prediction framework for the turbine shaft with random geometric parameters[J]. International Journal of Fatigue, 2022, 165:107218. [3] LIU X, WANG R Q, HU D Y, et al. Reliability-based design optimization approach for compressor disc with multiple correlated failure modes[J]. Aerospace Science and Technology, 2021, 110:106493. [4] YU A, HUANG H Z, LI Y F, et al. Fatigue life prediction of rolling bearings based on modified SWT mean stress correction[J]. Chinese Journal of Mechanical Engineering, 2021, 34:110. [5] LI H, HUANG H Z, LI Y F, et al. Physics of failure-based reliability prediction of turbine blades using multi-source information fusion[J]. Applied Soft Computing, 2018, 72:624-635. [6] INCE A, GLINKA G. A modification of Morrow and Smith-Watson-Topper mean stress correction models[J]. Fatigue & Fracture of Engineering Materials & Structures, 2011, 34:854-867. [7] SUN Q, DUI H N, FAN X L. A statistically consistent fatigue damage model based on Miner's rule[J]. International Journal of Fatigue, 2014, 69:16-21. [8] 姚卫星. 机械结构疲劳寿命分析[M]. 北京:国防工业出版社, 2003. YAO Weixing. Fatigue life estimation of structure[M]. Beijing:National Defense Industry Press, 2003. [9] 房辰泽,冷真,郭乃胜,等. 考虑加载次序影响的沥青非 线性 疲劳 损伤 累积 研究[J/OL]. 工程 力学, 2022[2022-10-25].https://kns.cnki.net/kcms2/article/abstr act?v=3uoqIhG8C45S0n9fL2suRadTyEVl2pW9UrhTDC dPD65C3OHJnlJee3TUqVxSmeiNVIJIAxUgyteoOyjN4z V8MUvWvgkmiFI5&uniplatform=NZKPT. FANG Chenze, LENG Zhen, GUO Naisheng, et al. Investigating nonlinear fatigue damage accumulation of asphalt binders considering loading sequence effect[J/OL]. Engineering Mechanics, 2022[2022-10-25]. https://kns. cnki.net/kcms2/article/abstract?v=3uoqIhG8C45S0n9fL 2suRadTyEVl2pW9UrhTDCdPD65C3OHJnlJee3TUqVx SmeiNVIJIAxUgyteoOyjN4zV8MUvWvgkmiFI5&unipla tform=NZKPT. [10] AERAN A, ACOSTA R, SIRIWARDANE S C, et al. A nonlinear fatigue damage model comparison with experimental damage evolution of S355(SAE 1020) structural steel and application to offshore jacket structures[J]. International Journal of Fatigue, 2020, 135:105568. [11] YU A, HUANG H Z, LI Y F, et al. A modified nonlinear fatigue damage accumulation model for life prediction of rolling bearing under variable loading conditions[J]. Fatigue & Fracture of Engineering Materials & Structures, 2022, 45(3):852-864. [12] ZHAO L H, CAI H C, WANG T, et al. Durability assessment of automotive structures under random variable amplitude loading[J]. Advances in Mechanical Engineering, 2018, 10(4):1-8. [13] DIAS J P, EKWARO-OSIRE S, JR A C, et al. Parametric probabilistic approach for cumulative fatigue damage using double linear damage rule considering limited data[J]. International Journal of Fatigue, 2019, 127:246-258. [14] SHIMOKAWA T, TANAKA S. A statistical consideration of Miner's rule[J]. International Journal of Fatigue, 1980, 2(4):165-170. [15] LIAO M, XU X, YANG Q X. Cumulative fatigue damage dynamic interference statistical model[J]. International Journal of Fatigue, 1995, 17(8):559-566. [16] SHEN H, LIN J, MU E. Probabilistic model on stochastic fatigue damage[J]. International Journal of Fatigue, 2000, 22(7):569-572. [17] RATHOD V, YADAV O P, RATHORE A, et al. Probabilistic modeling of fatigue damage accumulation for reliability prediction[J]. International Journal of Quality, Statistics, and Reliability, 2011:718901. [18] PINTO J M A, PUJOL J C F, JR C A C. Probabilistic cumulative damage model to estimate fatigue life[J]. Fatigue & Fracture of Engineering Materials & Structures, 2014, 37(1):85-94. [19] WIRSCHING P H. Fatigue reliability for offshore structures[J]. Journal of Structural Engineering, 1984, 110(10):2340-2356. [20] MARTINDALE S G, WIRSCHING P H. Reliability-based progressive fatigue collapse[J]. Journal of Structural Engineering, 1983, 109(8):1792-1811. [21] NI K, ZHANG S. Fatigue reliability analysis under two-stage loading[J]. Reliability Engineering & System Safety, 2000, 68(2):153-158. [22] RATHOD V, YADAV O P, RATHORE A, et al. Reliability-based design optimization considering probabilistic degradation behavior[J]. Quality and Reliability Engineering International, 2012, 28(8):911-923. [23] XIE L. Equivalent life distribution and fatigue failure probability prediction[J]. International Journal of Pressure Vessels and Piping, 1999, 76(4):267-273. [24] LANGER B F. Fatigue failure from stress cycles of varying amplitude[J]. Journal of Applied Mechanics, 1937, 59:A160-A162. [25] MINER M A. Cumulative damage in fatigue[J]. Journal of Applied Mechanics, 1945, 12(3):159-164. [26] GROVER H J. An observation concerning the cycle ratio in cumulative damage[C]//Symposium on Fatigue of Aircraft Structures, ASTM STP 274, American Society for Testing and Materials, Philadelphia, PA, 1960:120-124. [27] MANSON S S, FRECHE J C, ENSIGN C R. Application of a double linear damage rule to cumulative fatigue[C]//Fatigue Crack Propagation, ASTM STP 415, American Society for Testing and Materials, Philadelphia, PA, USA, 1967:384-412. [28] MANSON S S, HALFORD G R. Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage[J]. International Journal of Fracture, 1981, 17(2):169-192. [29] MANSON S S, HALFORD G R. Re-examination of cumulative fatigue damage analysis-An engineering perspective[J]. Engineering Fracture Mechanics, 1986, 25:539-571. [30] 吕海波. 机械结构疲劳可靠性分析方法研究[D]. 南京:南京航空航天大学, 2000. LÜ Haibo. Research on structural fatigue reliability analysis method[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2000. [31] TANAKA S, ICHIKAWA M, AKITA S. Statistical aspects of the fatigue life of nickel-silver wire under two-level loading[J]. International Journal of Fatigue, 1980, 2(4):159-163. [32] TANAKA S, ICHIKAWA M, AKITA S. A probabilistic investigation of fatigue life and cumulative cycle ratio[J]. Engineering Fracture Mechanics, 1984, 20(3):501-513. [33] YAN J H, ZHENG X, ZHAO K. Prediction of fatigue life and its probability distribution of notched friction welded joints under variable-amplitude loading[J]. International Journal of Fatigue, 2000, 22(6):481-494. [34] 李臻,郑修麟. 经锤击后的16Mn钢对焊件的疲劳寿命估算[J]. 焊接学报, 1997, 18(3):151-158. LI Zhen, ZHENG Xiulin. Fatigue life estimation of hammered 16Mn steel butt weldments[J]. Journal of Welding, 1997, 18(3):151-158. |