Journal of Mechanical Engineering ›› 2023, Vol. 59 ›› Issue (14): 264-276.doi: 10.3901/JME.2023.14.264
Previous Articles Next Articles
WEN Yuying, ZHANG Xiaoxin, YAN Qingzhi
Received:
2022-07-20
Revised:
2023-01-15
Online:
2023-07-20
Published:
2023-08-16
CLC Number:
WEN Yuying, ZHANG Xiaoxin, YAN Qingzhi. Failure Causes and the Improvement Countermeasures on High-speed Brake Disc[J]. Journal of Mechanical Engineering, 2023, 59(14): 264-276.
[1] 任慧芳. 高速列车制动盘传热特性及热负荷的数值研究[D]. 兰州:兰州交通大学,2019. REN Huifang. Numerical study on heat transfer characteristics and heat load of brake disc of high speed train[D]. Lanzhou:Lanzhou Jiaotong University,2019. [2] 傅志寰. 关于中国高铁发展的思考[R]. 北京:中国科学技术信息研究所多功能厅,2019. FU Zhihuan. Thoughts on the development of high speed railway in China[R]. Beijing:multi function department of China Institute of science and technology information,2019. [3] 耿凯. 高铁制动盘应力分析及其损伤机理研究[D]. 北京:北京交通大学,2018. GENG Kai. Research on stress analysis and damage mechanism of CRH brake disc[D]. Beijing:Beijing Jiaotong University,2018. [4] 杨强. 列车制动盘温度场和应力场仿真与分析[D]. 北京:北京交通大学,2009. YANG Qiang. Simulation and analysis of temperature field and stress field of train brake disc[D]. Beijing:Beijing Jiaotong University,2009. [5] 桑兴华. 轨道车辆制动盘磨粒磨损特性及机理研究[D]. 大连:大连交通大学,2018. SANG Xinghua. Study on abrasive wear characteristics and mechanism of rail vehicle brake disc[D]. Dalian:Dalian Jiaotong University,2018. [6] 李继山. 高寒动车组制动盘异常磨耗原因分析[J]. 铁道机车车辆,2016,36(2):20-23. LI Jishan. Cause analysis on abnormal wear of brake disc of high cold EMU[J]. Railway Locomotive & CAR,2016,36(2):20-23 [7] 马元明. 高速列车制动盘激光熔覆工艺及性能研究[D]. 成都:西南交通大学,2017. MA Yuanming. Research on laser cladding process and performance of brake disc material for high-speed train[D]. Chengdu:Southwest Jiaotong University,2017. [8] Kim J G,Kwon S T,Yoon S C,et al. Infrared thermographic analysis of railway brake disc during braking[J]. Key Engineering Materials,2012,488:597-600. [9] 张谦,常保华,王力,等. 高速列车锻钢制动盘温度场特征的实验研究[J]. 中国铁道科学,2007(1):81-5. ZHANG Qian,Chang Baohua,Wang Li,et al. Experimental study on temperature field characteristics of forged steel brake disc for high-speed train[J]. China Railway Science,2007(1):81-85. [10] Panier S,Dufrénoy P,Weichert D. An experimental investigation of hot spots in railway disc brakes[J]. Wear,2004,256(7-8):764-773. [11] 杨智勇,李志强,李卫京,等. 制动盘摩擦面热损伤的形成机理分析[J]. 铁道机车车辆,2012,32(3):14-19. Yang Zhiyong,Li Zhiqiang,Li Weijing,et al. Formation mechanism of thermal damage on friction surface of brake disc[J]. Railway Locomotive & CAR,2012,32(3):14-19. [12] 森久史,彭惠民. 制动盘的热疲劳原因与对策[J]. 国外机车车辆工艺,2009(3):38-41. Mori Jiushi,Peng Huimin. Causes and countermeasures of brake disc thermal fatigue[J]. Foreign Locomotive & Rolling Stock Technology,2009(3):38-41. [13] MORI H,TOMINAGA T,MATSUI M,et al. Observation of thermal cracks of microstructural size scale by thermal effect during wear in Ni-Cr-Mo alloy seel brake discs[J]. Journal of the Japan Institute of Metals,2006,70(10):785-789. [14] 姚远,张红军,刘进华. 高速机车轴盘制动装置温度场分析[J]. 机车电传动,2008(1):24-27. Yao Yuan,Zhang Hongjun,Liu Jinhua. Analysis of temperature field of axle disc brake device of high-speed locomotive[J]. Electric drive of locomotive,2008(1):24-27. [15] 戴鑫亮,王伯铭. ULF轻轨列车制动盘温度场及热应力分析[J]. 机车电传动,2018(3):90-95. Dai Xinliang,Wang Boming. Analysis of temperature field and thermal stress of brake disc of ULF light rail train[J]. Electric Drive for Locomotives,2018(3):90-95. [16] 夏毅敏,暨智勇,姚萍屏. 高速动车组制动盘瞬态温度场及热应力场分析[J]. 郑州大学学报(工学版),2009,30(3):75-78. Xia Yimin,Ji Zhiyong,Yao Pingping. Analysis of transient temperature field and thermal stress field of high-speed EMU brake disc[J]. Journal of Zhengzhou University(Engineering Edition),2009,30(3):75-78. [17] 乔峰,李和平,杨伟君,等. 高寒型动车组制动系统[J]. 铁道机车车辆,2011,31(5):108-110. Qiao Feng,LI Heping,Yang Weijun,et al. Brake system of high cold EMU[J]. Railway Locomotive & CAR,2011,31(5):108-110. [18] 李继山,李和平,林祜亭. 高速列车制动盘裂纹现状调查分析[J]. 铁道机车车辆,2005(6):3-5. Li Jishan,Li Heping,Lin Huting. Investigation and analysis of high-speed train brake disc crack[J]. Railway Locomotive & CAR,2005(6):3-5 [19] 李明. 高速列车制动盘热-机耦合数值模拟[D]. 成都:西南交通大学,2007. LI Ming. Coupled thermo-mechanical numerical simulation of brake discs for high-speed trains[D]. Chengdu:Southwest Jiaotong University,2007. [20] 李继山,韩晓辉,范荣巍. 高速列车制动盘残余应力数值仿真及试验验证[J]. 铁道机车车辆,2010,30(6):8-10,85. Li Jishan,Han Xiaohui,fan Rongwei. Numerical simulation and experimental verification of residual stress of high-speed train brake disc[J]. Railway Locomotive & CAR,2010,30(6):8-10,85. [21] 李继山. 高速列车合金锻钢制动盘寿命评估研究[D]. 北京:铁道部科学研究院,2006. LI Jishan. Study on life estimation for alloy forging steel brake disc of high-speed train[D]. Beijing:China Academy of Railway Sciences,2006. [22] 李志强. 高速列车制动盘热斑特征及裂纹萌生扩展机制研究[D]. 北京:北京交通大学,2016. LI Zhiqiang. Research on characteristics of hot spots and initiation and propagation mechanisms of cracks of brake discs used for high-speed trains[D]. Beijing:Beijing Jiaotong University,2016. [23] 石晓玲,李强,薛海,等. 高速列车锻钢制动盘多裂纹间作用机制研究[J]. 铁道学报,2016,38(3):36-41. Shi Xiaoling,Li Qiang,Xue Hai,et al. Study on mechanism of multiple cracks in forged steel brake disc of high-speed train[J]. Journal of the China Railway Society,2016,38(3):36-41. [24] Wang Zhizhong,Han Jianmin,Domblesky J P,et al. Crack propagation and microstructural transformation on the friction surface of a high-speed railway brake disc[J]. Wear,2019,428:45-54. [25] Yang Zhiyong,Han Jianmin,LI Weijing,et al. Analyzing the mechanisms of fatigue crack initiation and propagation in CRH EMU brake discs[J]. Engineering Failure Analysis,2013,34:121-128. [26] 汤忖江,陈蕴博,左玲立,等. 高速列车制动盘材质应用现状和研究进展[J]. 材料导报,2018,32(增刊1):443-448. Tang Wujiang,Chen Yunbo,Zuo Lingli,et al. Application status and research progress of brake disc materials for high-speed trains[J]. Materials Reports,2018,32(Suppl.1):443-448. [27] 王磊,潘祺睿,陈辉. 和谐型电力机车用制动摩擦副结构设计[J]. 铁道运营技术,2018,24(4):1-3,9. Wang Lei,pan Qirui,Chen Hui. Structural design of brake friction pair for harmonious electric locomotive[J]. Railway Operation Technology,2018,24(4):1-3,9. [28] 王皓,高飞,农万华,等. 闸片结构对制动盘温度场及热应力场的影响[J]. 铁道机车车辆,2010,30(4):29-32. Wang Hao,Gao Fei,Nong Wanhua,et al. Effect of brake pad structure on temperature field and thermal stress field of brake disc[J]. Railway Locomotive & CAR,2010,30(4):29-32. [29] 孙超. 摩擦块排布对制动盘温度场及热应力场的影响[D]. 大连:大连交通大学,2012. SUN Chao. Study on the effect of the spatial arrangement of friction blocks on temperature field and thermal stress field of brake disc[D]. Dalian:Dalian Jiaotong University,2012. [30] 农万华,高飞,符蓉,等. 摩擦块形状对制动盘摩擦温度及热应力分布的影响[J]. 润滑与密封,2012,37(8):52-56. Nong Wanhua,Gao Fei,Fu Rong,et al. Effect of friction block shape on friction temperature and thermal stress distribution of brake disc[J]. Lubrication Engineering,2012,37(8):52-56. [31] 农万华,符蓉,韩晓明. 优化结构闸片对制动盘温度及热应力的影响[J]. 大连交通大学学报,2012,33(4):62-65. Nong Wanhua,Fu Rong,Han Xiaoming. Effect of optimized brake pad on temperature and thermal stress of brake disc[J]. Journal of Dalian Jiaotong University,2012,33(4):62-65. [32] 农万华. 基于闸片结构的列车盘形制动温度和应力的数值模拟及试验研究[D]. 大连:大连交通大学,2012. NONG Wanhua. Numerical simulation and experimental study of temperature and stress of the train disc brake based on the brake pads structure[D]. Dalian:Dalian Jiaotong University,2012. [33] 王德民. 通风式锻钢制动盘锻造工艺及组织性能研究[D]. 北京:北京交通大学,2019. WANG Demin. Study on forging technology and microstructure and properties of ventilated forged steel brake disc[D]. Beijing:Beijing Jiaotong University,2019. [34] 宋宝韫,高飞,陈吉光,等. 高速列车制动盘材料的研究进展[J]. 中国铁道科学,2004(4):12-18. Song Baokai,Gao Fei,Chen Jiguang,et al. Research progress of brake disc materials for high speed trains[J]. China Railway Science,2004(4):12-18. [35] 王磊,朱松,潘祺睿,等. 列车盘形制动装置技术现状及发展趋势[J]. 机车车辆工艺,2015(6):10-13. Wang Lei,Zhu song,pan Qirui,et al. Technical status and development trend of train disc brake[J]. Locomotive & Rolling Stock Technology,2015(6):10-13. [36] 周敏云,韩建民,芦金宁,等. 铁道车辆制动盘材料的K指标分析[J]. 铁道学报,2002(1):119-120. Zhou Minyun,Han Jianmin,Lu Jinning,et al. K index analysis of brake disc materials for railway vehicles[J]. Journal of the China Railway Society,2002(1):119-120. [37] 王文静,谢基龙,李强,等. SiCp_A356复合材料制动盘应力场数值模拟与热疲劳寿命预测[J]. 机械工程学报,2007(6):127-132. Wang Wenjing,Xie Jilong,Li Qiang,et al. Numerical simulation of stress field and prediction of thermal fatigue life of SiCp_A356 composite Brake disc[J]. Journal of Mechanical Engineering,2007(6):127-132. [38] 徐济民,张海泉,陈强,等. 快速列车制动盘安全评定与寿命预测模型[J]. 清华大学学报(自然科学版),2006(5):609-612. Xu Jimin,Zhang Haiquan,Chen Qiang,et al. Safety evaluation and life prediction model of brake discs for fast trains[J]. Journal of Tsinghua University (Natural Science Edition),2006(5):609-612. [39] 钱坤才,张俊新. 非金属夹杂物引起铸钢制动盘早期裂纹的研究[J]. 铸造,2014,63(11):1161-1164. Qian Kuncai,Zhang Junxin. Study on early cracks of cast steel brake disc caused by non-metallic inclusions[J]. Foundry,2014,63(11):1161-1164. [40] 吴射章,陈鑫,潘尹,等. 铸钢轴装制动盘热裂纹形成和扩展机理[J]. 机车车辆工艺,2018(6):33-35. Wu Shezhang,Chen Xin,pan Yin,et al. Hot crack formation and propagation mechanism of cast steel axle mounted brake disc[J]. Locomotive & Rolling Stock Technology,2018(6):33-35. [41] 王飞,王风洲. 高速列车铸钢制动盘的组织与性能[J]. 金属热处理,2018,43(2):133-136. Wang Fei,Wang Fengzhou. Microstructure and properties of cast steel brake disc for high-speed train[J]. Heat Treatment of Metals,2018,43(2):133-136. [42] Harada N,Takuma M,Tsujikawa M,et al. Effects of V addition on improvement of heat shock resistance and wear resistance of Ni-Cr-Mo cast steel brake disc[J]. Wear,2013,302(1-2):1444-1452. [43] 王东生,田宗军,沈理达,等. 激光熔覆技术研究现状及其发展[J]. 应用激光,2012,32(6):538-544. Wang Dongsheng,Tian Zongjun,Shen Lida,et al. Research status and development of laser cladding technology[J]. Applied Laser,2012,32(6):538-544. [44] Liu Yan,Wu Ying,Ma Yuanming,et al. High temperature wear performance of laser cladding Co06 coating on high-speed train brake disc[J]. Applied Surface Science,2019,481:761-766. [45] 王玉乔. 激光熔覆铁基合金粉末制备高速列车制动盘的工艺研究[D]. 石家庄:石家庄铁道大学,2018. WANG Yuqiao. Study on process technology of laser cladding iron-based alloy powder for high-speed trains brake disc[D]. Shijiazhuang:Shijiazhuang Tiedao University,2018. [46] 王玉乔,郭腾达,齐海波. 微量合金元素对激光熔覆高速列车制动盘组织的影响[J]. 应用激光,2017,37(6):825-828. Wang Yuqiao,Guo Tengda,Qi Haibo. Effect of trace alloying elements on microstructure of laser cladding high-speed train brake disc[J]. Applied Laser,2017,37(6):825-828. [47] 郭腾达. 激光熔覆镍基合金粉末制备高速列车制动盘的工艺研究[D]. 石家庄:石家庄铁道大学,2017. GUO Tengda. Study on process technology of laser cladding nickel-based alloy powder for high-speed trains brake disc[D]. Shijiazhuang:Shijiazhuang Jiaotong University,2017. [48] 赵龙志,刘武,刘德佳,等. SiC含量对激光熔覆SiC/Ni60A复合涂层显微组织和耐磨性能的影响[J]. 材料工程,2017,45(3):88-94. Zhao Longzhi,Liu Wu,Liu Dejia,et al. Effect of SiC content on microstructure and wear resistance of laser cladding SiC/Ni60A composite coating[J]. Materials Engineering,2017,45(3):88-94. [49] 刘武. 制动盘用激光熔覆CNTs/SiC/Ni60A高温合金混杂复合涂层制备研究[D]. 南昌:华东交通大学,2016. LIU Wu. Study on the brake disc composite coating of CNTs/SiC/Ni60A superalloy by laser cladding[D]. Nanchang:East China Jiaotong University,2016. [50] 李深. 激光熔覆ZrV2O7/SiC/Ni复合涂层[D]. 南昌:华东交通大学,2016. LI Shen. Laser cladding ZrV2O7/SiC/Ni composite coating[D]. Nanchang:East China Jiaotong University,2016. [51] 皇甫立志. 激光熔覆稀土Er掺杂FeAlSi/Al复合涂层研究[D]. 南昌:华东交通大学,2016. HUANGFU Lizhi. Study on adding Er to FeAlSi/Al composite coating by laser cladding[D]. Nanchang:East China Jiaotong University,2016. [52] 曹振飞,齐海波,林齐,等. 一种高速列车制动盘高熵合金耐磨层组织和性能的研究[J]. 表面技术,2018,47(8):30-35. Cao Zhenfei,Qi Haibo,Lin Qi,et al. Study on microstructure and properties of high entropy alloy wear resistant layer for high-speed train brake disc[J]. Surface Technology,2018,47(8):30-35. [53] 余敏,张鸿羽,曹开,等. 激光熔覆在高速列车上的应用研究现状[J]. 表面技术,2020,49(10):12-20,38. Yu Min,Zhang Hongyu,Cao Kai,et al. Application of laser cladding on high-speed train[J]. Surface Technology,2020,49(10):12-20,38. [54] 马光,王国刚,孙冬柏,等. 热喷涂在铁路行业的应用现状及前景展望[J]. 铁道学报,2007(1):95-101. Ma Guang,Wang Guogang,sun Dongbai,et al. Application status and prospect of thermal spraying in railway industry[J]. Journal of the China Railway Society,2007(1):95-101. [55] 易茂中,韩志海,陈华,等. 等离子喷涂铁-镍-钴-碳化钨涂层制动摩擦特性的研究[J]. 摩擦学学报,1996(2):55-60. Yi Maozhong,Han Zhihai,Chen Hua,et al. Study on braking friction characteristics of plasma sprayed Fe-Ni-Co-WC coating[J]. Journal of Tribology,1996(2):55-60. [56] BARTYS H,GUERIN J D,WATREMEZ M,et al. A comparative study of plasma sprayed coatings on railway brake discs[J]. Surface Engineering,2001,17(2):127-130. [57] BEKİR G,İBRAHİM M. Tribological properties of brake discs coated with Cr2O3-40% TiO2 by plasma spraying[J]. Surface Review and Letters,2019,26(10):1950075. [58] BRICOUT J,郭晓燕. 制动用材料[J]. 国外机车车辆工艺,2004(1):25-31. Bricout J,Guo Xiaoyan. Brake materials[J]. Foreign Locomotive & Rolling Stock Technology,2004(1):25-31. [59] 符蓉. 高速列车制动材料[M]. 北京:化学工业出版社,2011. Fu Rong. Brake materials for high-speed trains[M]. Beijing:Chemical Industry Press,2011. [60] Watremez M,Bricout J P,Marguet B,et al. Friction,temperature,and wear analysis for ceramic coated brake disks[J]. Journal of Tribology,1996,118:457. [61] Kiliçaslan I,Samur R,Demir A. Investigation of the coatings applied onto brake discs on disc-brake pad pair[J]. Metalurgija,2009,48(3):161-166. [62] Wahlstrom J,Lyu Y,Matjeka V,et al. A pin-on-disc tribometer study of disc brake contact pairs with respect to wear and airborne particle emissions[J]. Wear,2017(384):124-130. [63] Öz A,Gürbüz H,Yakut A K,et al. Braking performance and noise in excessive worn brake discs coated with HVOF thermal spray process[J]. Journal of Mechanical Science and Technology,2017,31(2):535-543. [64] Priyan M S,Azad A,Araffath S Y. Influence of HVOF parameters on the wear resistance of Cr3C2-NiCr coating[J]. Journal of Materials Science & Surface Engineering,2016,4(2):355-359. [65] Federici M,Menapace C,Moscatelli A,et al. Effect of roughness on the wear behavior of HVOF coatings dry sliding against a friction material[J]. Wear,2016(368):326-334. [66] Federici M,Menapace C,Moscatelli A,et al. Pin-on-disc study of a friction material dry sliding against HVOF coated discs at room temperature and 300℃[J]. Tribology International,2017(115):89-99. |
[1] | XU Yuanzhi, JIAO Zongxia, FENG Hao, XIE Yan, YANG Chongyang, XIE Zuojian, LIU Zehua, JIN Yaolan, MENG Shaokang. Analysis and Suppression for Self-excited Vibration of Aircraft Hydraulic Braking System [J]. Journal of Mechanical Engineering, 2024, 60(16): 200-208. |
[2] | YU Zhuoping;FENG Yuan;XIONG Lu. Review on Vehicle Dynamics Control of Distributed Drive Electric Vehicle [J]. , 2013, 49(8): 105-114. |
[3] | YANG Xiao;ZHANG Zhihui;WANG Jintian;ZHANG Baoyu;WANG Liang;CHANG Fang;REN Luquan. Computer Simulation of Bionic Brake Disk Surfaces Temperature and Stress [J]. , 2012, 48(17): 121-127. |
[4] | CHEN Wuwei;CHU Changbao. Electric Power Steering System and Anti-lock Braking System Based on Layered Coordinated Control [J]. , 2009, 45(7): 188-193. |
[5] | ZHANG Junzhi;XUE Junliang;LU Xin;LI Bo;ZHANG Pengjun. Series Regenerative Braking Technique for Hybird Electric Buses [J]. , 2009, 45(6): 102-106. |
[6] | YU Liangyao;WANG Huiyi;SONG Jian;QI Xuele;KONG Lei. PERFORMANCE EVALUATION AND TEST OF ANTI-LOCK BRAKING SYSTEM HYDRAULIC SYSTEM [J]. , 2007, 43(9): 40-46. |
[7] | LI Rui;ZHENG Taixiong;LI Yinguo;FENG Huizong;CHEN Weimin. HIERARCHICAL INTELLIGENT CONTROL OF AUTOMOBILE ANTI-LOCK BRAKING SYSTEM [J]. , 2007, 43(8): 135-141. |
[8] | Li Jun;Zhang Jianwu;Yu Fan Yin Chengliang. INVESTIGATION TO THE RAPID DEVELOPMENT OF VEmCLE ABS CONTROL SYSTEM BY USING HARDWARE-IN-THE-LOOP SIMULATION ECHNOLOGY [J]. , 2002, 38(7): 84-90. |
[9] | Wu Gaogui;Huang Rongqing;Zhu Xinchao;Wu Siguang;Ma Yue. STUDY ON ANTILOCK BRAKING SYSTEM OF AUTOMOBILE [J]. , 1997, 33(6): 43-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||