[1] DING Han,GAO R X,ISAKSSON A J,et al. State of AI-based monitoring in smart manufacturing and introduction to focused section[J]. IEEE/ASME Transactions on Mechatronics,2020,25(5):2143-2154. [2] YUAN Ye,MA Guijun,CHENG Cheng,et al. A general end-to-end diagnosis framework for manufacturing systems[J]. National Science Review,2020,7(2):418-429. [3] CHENG Cheng,MA Guijun,ZHANG Yong,et al. A deep learning-based remaining useful life prediction approach for bearings[J]. IEEE/ASME Transactions on Mechatronics,2020,25(3):1243-1254. [4] ZHAO Huimin,LIU Haodong,JIN Yang,et al. Feature extraction for data-driven remaining useful life prediction of rolling bearings[J]. IEEE Transactions on Instrumentation and Measurement,2021,70:1-10. [5] YUAN Ye,TANG Xiuchuan,ZHOU Wei,et al. Data driven discovery of cyber physical systems[J]. Nature Communications,2019,10(1):1-9. [6] JIN Yaochu,WANG Handing,CHUGH T,et al. Data-driven evolutionary optimization:An overview and case studies[J]. IEEE Transactions on Evolutionary Computation,2018,23(3):442-458. [7] REN Hao,LI Hongwei,DAI Yuanshun,et al. Querying in internet of things with privacy preserving:Challenges, solutions and opportunities[J]. IEEE Network,2018,32(6):144-151. [8] WANG Junliang,ZHENG Peng,LV Youlong,et al. Fog-IBDIS:Industrial big data integration and sharing with fog computing for manufacturing systems[J]. Engineering,2019,5(4):662-670. [9] 李尤慧子,殷昱煜,高洪皓,等. 面向隐私保护的非聚合式数据共享综述[J]. 通信学报,2021,42(6):195-212. LI Youhuizi,YIN Yuyu,GAO Honghao,et al. Survey on privacy protection in non-aggregated data sharing[J]. Journal on Communications,2021,42(6):195-212. [10] LI Hongwei,LIU Dongxiao,DAI Yuanshun,et al. Engineering searchable encryption of mobile cloud networks:When QoE meets QoP[J]. IEEE Wireless Communications,2015,22(4):74-80. [11] LI Hongwei,YANG Yi,DAI Yuanshun,et al. Achieving secure and efficient dynamic searchable symmetric encryption over medical cloud data[J]. IEEE Transactions on Cloud Computing,2017,8(2):484-494. [12] MOHASSEL P,ZHANG Yupeng. Secureml:A system for scalable privacy-preserving machine learning[C]//IEEE symposium on security and privacy,May 22-24,2017,San Jose,California. IEEE,2017:19-38. [13] BONAWITZ K,IVANOV V,KREUTER B,et al. Practical secure aggregation for privacy-preserving machine learning[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,October 30-November 3,2017,Dallas Texas USA. New York:ACM,2017:1175-1191. [14] Al-RUBAIE M,CHANG J M. Privacy-preserving machine learning:Threats and solutions[J]. IEEE Security & Privacy,2019,17(2):49-58. [15] LI Ping,LI Tong,YE Heng,et al. Privacy-preserving machine learning with multiple data providers[J]. Future Generation Computer Systems,2018,87:341-350. [16] MCMAHAN B,MOORE E,RAMAGE D,et al. Communication-efficient learning of deep networks from decentralized data[C]//Artificial Intelligence and Statistics,20-22 April 2017,Fort Lauderdale,USA. JMLR:W&CP volume 54,2017:1273-1282. [17] BONAWITZ K,EICHNER H,GRIESKAMP W,et al. Towards federated learning at scale:System design[J]. Proceedings of Machine Learning and Systems,2019,1:374-388. [18] KONECNY J,MCMAHAN H B,YU F X,et al. Federated learning:Strategies for improving communication efficiency[J]. arXiv preprint arXiv:1610.05492,2016. [19] YANG Qiang,LIU Yang,CHENG Yong,et al. Federated learning[C]//Synthesis Lectures on Artificial Intelligence and Machine Learning, Switzerland, 2019. [20] YANG Qiang,LIU Yang,CHEN Tianjian,et al. Federated machine learning:Concept and applications[J]. ACM Transactions on Intelligent Systems and Technology,2019,10(2):1-19. [21] RIVEST R L,ADLEMAN L,DERTOUZOS M L. On data banks and privacy homomorphisms[J]. Foundations of secure computation,1978,4(11):169-180. [22] YI Xun,PAULET R,BERTINO E. Homomorphic encryption[M]//Homomorphic encryption and applications. Springer,Cham,2014:27-46. [23] FAN Junfeng,VERCAUTEREN F. Somewhat practical fully homomorphic encryption[J]. Cryptology ePrint Archive,2012. [24] BRAKERSKI Z,GENTRY C,VAIKUNTANATHAN V. (Leveled) fully homomorphic encryption without bootstrapping[J]. ACM Transactions on Computation Theory,2014,6(3):1-36. [25] ACAR A,AKSU H,ULUAGAC A S,et al. A survey on homomorphic encryption schemes:Theory and implementation[J]. ACM Computing Surveys,2018,51(4):1-35. [26] DWORK C,MCSHERRY F,NISSIM K,et al. Calibrating noise to sensitivity in private data analysis[C]//Theory of cryptography conference,March 4-72006,New York,USA. Berlin,Heidelberg:Springer,2006:265-284. [27] DWORK C,ROTH A. The algorithmic foundations of differential privacy[J]. Foundations and Trends in Theoretical Computer Science,2014,9(3-4):211-407. [28] ABAD M,CHU A,GOODFELLOW I,et al. Deep learning with differential privacy[C]//Proceedings of the ACM SIGSAC conference on computer and communications security,October 24-282016,Vienna,Austria. New York:ACM,2016:308-318. [29] ZHANG Jun,ZHANG Zhenjie,XIAO Xiaokui,et al. Functional mechanism:regression analysis under differential privacy[J]. arXiv preprint arXiv:1208.0219, 2012. |