[1] WANG Jianjun,HU Xueyao,YUAN Kangbo,et al. Impact resistance prediction of superalloy honeycomb using modified johnson-cook constitutive model and fracture criterion[J]. International Journal of Impact Engineering,2019,131:66-77. [2] 马成,刘方军. 蜂窝材料加工工艺研究进展[J]. 航空制造技术,2016(3):48-54.MA Cheng,LIU Fangjun. Electrical arc machining——high efficient machining technology for difficult-to-cut aeronautical materials[J]. Aeronautical Manufacturing Technology,2016(3):48-54. [3] 聂兵. 蜂窝材料高速铣削过程分析与数值模拟[D]. 大连:大连理工大学,2013. NIE Bing. High-speed milling analysis and numerical simulation for honeycomb material[D]. Dalian:Dalian University of Technology,2013. [4] 刘景涛,潘红蕾,朱菱. 高温合金蜂窝成形制造工艺及性能评价[J]. 精密成形工程,2020,12(5):138-144. LIU Jingtao,PAN Honglei,ZHU Ling. Superalloy honeycomb forming process and performance evaluation[J]. Journal of Netshape Forming Engineering,2020,12(5):138-144. [5] 王凤彪,侯博,袁凯,等. 镍基合金蜂窝材料冰固持条件下的超低温铣削研究[J]. 兵工学报,2016(5):888-894. WANG Fengbiao,HOU Bo,YUAN kai,et al. Research on milling of ni-based alloy honeycomb material at ice fixation and cryogenic temperatyres[J]. Acta Armamentarii,2016(5):888-894. [6] KUMAR S,RAO M,BALASUNDAR I,et al. Compressive behaviour of a nickel superalloy superni 263 honeycomb sandwich panel[J]. The Journal of Sandwich Structures & Materials,2020,22(5):1426-449. [7] BING Pan,YU Liping,WU Dafang. Thermo-mechanical response of superalloy honeycomb sandwich panels subjected to non-steady thermal loading[J]. Materials & Design,2015,88:528-536. [8] 朱强.GH4169镍基高温合金薄板介观尺度塑性变形机理[D]. 哈尔滨:哈尔滨工业大学,2020.ZHU Qiang. Mesoscopic plastic deformation mechanism of gh4169 nickel-based superalloy thin sheet[D]. Harbin:Harbin Institute of Technology,2020. [9] 岳小康. 热防护结构高温合金蜂窝板的力学性能研究[D]. 南京:南京航空航天大学,2017. YUE Xiaokang. Research on mechanical properties of high temperature alloy honeycomb panels used in thermal protection system[D]. Nanjing:Nanjing University of Aeronautics an Astronautics,2017. [10] WANG Fengbiao,WANG Yongqing. Investigate on milling force of cryogenic cooling processing aluminum honeycomb treated by ice fixation[J]. International Journal of Advanced Manufacturing Technology,2018, 98(5-8):1253-265. [11] 王路平,段春争,李超,等. 高速铣削铝蜂窝芯壁变形研究[J]. 工具技术,2021(9):42-46. WANG Luping,DUAN Chunzheng,LI Chao,et al. Research on deformation of honeycomb wall in high speed milling of aluminum honeycomb core[J]. Tool Engineering,2021(9):42-46. [12] 袁信满,曹文军,张桂,等. 匕首刀超声切削Nomex蜂窝芯复合材料切削力预测模型构建[J]. 制造技术与机床,2021(9):79-85.YUAN Xinman,CAO Wenjun,ZHANG Gui,et al. Construction of cutting force prediction model of honeycomb core with dagger knife[J]. Manufacturing Technology & Machine Tool,2021(9):79-85. [13] 侯小林,祝益军. 蜂窝结构件的数控加工[J]. 航空制造技术,2009(S1):60-63. HOU Xiaolin,ZHU Yijun. NC Machining of honeycomb structure[J]. Aeronautical Manufacturing Technology, 2009(S1):60-63. [14] GIBSON,LORNA J,MICHAEL F. Cellular solids:Structure and properties[M]. Cambridge:Cambridge University Press,2014. [15] 姜少玮,王永青,刘阔,等. 高温合金蜂窝芯冰固持低损伤加工技术研究[J]. 中国机械工程,2022,33(5):577-582. JIANG Shaowei,WANG Yongqing,LIU Kuo,et al. Research on ice fixation and low damage machining technology of superalloy honeycomb cores[J]. China Mechanical Engineering,2022,33(5):577-582. [16] JOHNSON,GORDON R,WILLIAM H. Fracture characteristics of three metals subjected to various strains,strain rates,temperatures and pressures[J]. Engineering Fracture Mechanics,1985,21(1):31-48. [17] 王志冰. 微细切削高温合金GH4169有限元仿真及实验研究[D]. 秦皇岛:燕山大学,2016. WANG Zhibing. Finite element simulation of micro cutting high temperature alloy GH4169 and experiment research[D]. Qinhuangdao:Yanshan University,2016. [18] 邱坤贤. 铝蜂窝芯材料切削过程物理建模与工艺研究[D]. 上海:上海交通大学,2017. QIU Kunxian. Physical modeling of cutting processes and study on cutting technology of aluminum honeycomb core material[D].Shanghai:Shanghai Jiao Tong University,2017. [19] 宋戈. 基于切削力精确建模的钛合金薄壁件让刀变形预测研究[D]. 济南:山东大学,2012. SONG Ge. Research on surface error prediction in milling process of thin wall part based on accurate cutting force modeling[D]. Jinan:Shandong University,2012. [20] 高星鹏. 含缺陷高温合金蜂窝板力学性能研究[D]. 南京:南京航空航天大学,2018. GAO Xingpeng. Research on mechanical properties of high temperature alloy honeycomb panels with defects[D]. Nanjing:Nanjing University of Aeronautics an Astronautics,2018. |