[1] DONG Shuzhi, WEN Guangrui, LEI Zihao, et al. Transfer learning for bearing performance degradation assessment based on deep hierarchical features[J]. ISA Transactions, 2021, 108:343-355. [2] ZHANG Li, GUO Liang, GAO HongLi, et al. Instance-based ensemble deep transfer learning network:a new intelligent degradation recognition method and its application on ball screw[J]. Mechanical Systems and Signal Processing, 2020, 140:106681. [3] DONG Shaojiang, SHENG Jinlu, TANG Baoping, et al. Bearings in simulated space conditions running state detecton based on tsallis entropy-KPCA and optimized fuzzy C-means model[J]. Noise Control Engineering Journal, 2017, 65(2):62-70. [4] 陈仁祥, 陈思杨, 杨黎霞, 等. 基于振动敏感时频特征的航天轴承寿命状态识别方法[J]. 振动与冲击, 2016, 35(17):134-139. CHEN Renxiang, CHEN Siyang, YANG Lixia, et al. Life state recognition method for space bearings based on sensitive time-frequency features of vibration[J]. Journal of Vibration and Shock, 2016, 35(17):134-139. [5] MIAO Xuewen, NIU Cong, YANG Yun, et al. Grade-life prognostic model of aircraft engine bearing[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2012(2):73-80. [6] LI Xiang, ZHANG Wei, MA Hui, et al. Partial transfer learning in machinery cross-domain fault diagnostics using class-weighted adversarial networks[J]. Neural Networks, 2020, 129:313-322. [7] 雷亚国, 杨彬, 杜兆钧, 等. 大数据下机械装备故障的深度迁移诊断方法[J]. 机械工程学报, 2019, 55(7):1-8. LEI Yaguo, YANG Bin, DU Zhaojun, et al. Deep transfer diagnosis method for machinery in big data rra[J]. Journal of Mechanical Engineering, 2019, 55(7):1-8. [8] ZHOU Funa, YANG Shuai, FUJITAj H, et al. Deep learning fault diagnosis method based on global optimization gan for unbalanced data[J]. Knowledge-based Systems, 2020, 187:104837. [9] ZHOU Qiang, ZHOU Wenan, WANG Shirui, et al. Multiple adversarial networks for unsupervised domain adaptation[J]. Knowledge-based Systems, 2021, 212:106606. [10] SAITO K, WATANABE K, USHIKU Y, et al. Maximum classifier discrepancy for unsupervised domain adaptation[J]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2018:3723-3732. [11] WU Yuxin, HE Kaiming. Group normalization[J]. International Journal of Computer Vision, 2019, 128:742-755. [12] SAITO K, KIM D, SCLAROFF S, et al. Semi-supervised domain adaptation via minimax entropy[J]. Proceedings of the IEEE International Conference on Computer Vision, 2019:8049-8057. [13] QIU Hai, LEE J, LIN Jing, et al. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[J]. Journal of Sound & Vibration, 2006, 289:1066-1090. [14] HELMI H, FOROUZANTABAR A. Rolling bearing fault detection of electric motor using time domain and frequency domain features extraction and ANFIS[J]. IET Electric Power Applications, 2019, 13(5):662-669. [15] 丁锋, 何正嘉, 訾艳阳, 等. 基于设备状态振动特征的比例故障率模型可靠性评估[J]. 机械工程学报, 2009, 45(12):89-94. DING Feng, HE Zhengjia, ZI Yangyang, et al. Reliability assessment based on equipment condition vibration feature using proportional hazards model[J]. Journal of Mechanical Engineering, 2009, 45(12):89-94. [16] 张焱, 汤宝平, 韩延, 等. 融合失效样本与截尾样本的滚动轴承寿命预测[J]. 振动与冲击, 2017, 36(23):10-16. ZHANG Yan, TANG Baoping, HAN Yan, et al. Life prediction for rolling bearings utilizing both failure and truncated samples[J]. Journal of Vibration and Shock, 2017, 36(23):10-16. [17] 张小丽, 王保建, 马猛, 等. 滚动轴承寿命预测综述[J]. 机械设计与制造, 2015(10):221-224. ZHANG Xiaoli, WANG Baojian, MA Meng, et al. A review of life prediction for roller bearing[J]. Machinery Design & Manufacture, 2015(10):221-224. [18] ZHANG Zhongwei, CHEN Huaihai, LI Shunming, et al. Unsupervised domain adaptation via enhanced transfer joint matching for bearing fault diagnosis[J]. Measurement, 2020, 165:108071. |