[1] 田威,焦嘉琛,李波,等.航空航天制造机器人高精度作业装备与技术综述[J].南京航空航天大学学报, 2020, 52(3):341-352. TIAN Wei, JIAO Jiachen, LI Bo, et al. High precision robot operation equipment and technology in aerospace manufacturing[J]. Journal of Nanjing University of Aeronautics&Astronautics, 2020, 52(3):341-352. [2] SCHNEIDER U, DRUST M, ANSALONI M, et al. Improving robotic machining accuracy through experimental error investigation and modular compensation[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(1-4):3-15. [3] MöLLER C, SCHMIDT H C, KOCH P, et al. Machining of large scaled CFRP-Parts with mobile CNC-based robotic system in aerospace industry[J]. Procedia Manufacturing, 2017, 14:17-29. [4] MöLLER C, SCHMIDT H C, KOCH P, et al. Real time pose control of an industrial robotic system for machining of large scale components in aerospace industry using laser tracker system[J]. SAE International Journal of Aerospace, 2017, 10(2):100-108. [5] 焦国太,冯永和,王锋,等.多因素影响下的机器人综合位姿误差分析方法[J].应用基础与工程科学学报, 2004, 12(4):435-442. JIAO Guotai, FENG Yonghe, WANG Feng, et al. Analysis method of robot pose error under multi-factors[J]. Journal of Basic Science and Engineering, 2004, 12(4):435-442. [6] 李文龙,谢核,尹周平,等.机器人加工几何误差建模研究:I空间运动链与误差传递[J].机械工程学报, 2021, 57(7):154-168. LI Wenlong, XIE He, YIN Zhouping, et al. The research of geometric error modeling of robotic machining:I spatial motion chain and error transmission[J]. Journal of Mechanical Engineering, 2021, 57(7):154-168. [7] ZHAO Changxi, WEN Ke, YUE Yi, et al. Research on numerical control system of the mobile robotic equipment for unstructured machining[C]//2018 WRC Symposium on Advanced Robotics and Automation (WRC SARA) Proceedings. Piscataway:IEEE, 2018:208-212. [8] 文科,张加波,乐毅,等.数控驱动的移动铣削机器人精度提升方法[J].机械工程学报, 2021, 57(5):72-80. WEN Ke, ZHANG Jiabo, YUE Yi, et al. Method for improving accuracy of NC-driven mobile milling robot[J]. Journal of Mechanical Engineering, 2021, 57(5):72-80. [9] TANG Xiaowei, YAN Rong, PENG Fangyu, et al. Deformation error prediction and compensation for robot multi-axis milling[C]//Intelligent Robotics and Applications-11th International Conference, ICIRA 2018, Proceedings. Cham:Springer International Publishing, 2018:309-318. [10] CHEN Chen, PENG Fangyu, YAN Rong, et al. Stiffness performance index based posture and feed orientation optimization in robotic milling process[J]. Robotics and Computer Integrated Manufacturing, 2019, 55:29-40. [11] 李睿.机器人柔性制造系统的在线测量与控制补偿技术[D].天津:天津大学, 2014. LI Rui. On-line measurement and control compensation technologies for robot flexible manufacturing system[D]. Tianjin:Tianjin University, 2014. [12] GHARAATY S, SHU T, XIE W, et al. Accuracy enhancement of industrial robots by on-line pose correction[C]//20172nd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS). Piscataway:IEEE, 2017:214-220. [13] 史晓佳,张福民,曲兴华,等. KUKA工业机器人位姿测量与在线误差补偿[J].机械工程学报, 2017, 53(8):1-7. SHI Xiaojia, ZHANG Fumin, QU Xinghua, et al. Position and attitude measurement and online errors compensation for KUKA industrial robots[J]. Journal of Mechanical Engineering, 2017, 53(8):1-7. [14] WANG Xinzhi, LI Zhoulong, BI Qingzhen, et al. An accelerated convergence approach for real-time deformation compensation in large thin-walled parts machining[J]. International Journal of Machine Tools and Manufacture, 2019, 142:98-106. [15] LI Luning, LIU Xiangfeng, YANG Fan, et al. A review of artificial neural network based chemometrics applied in laser-induced breakdown spectroscopy analysis[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2021, 180:106183. [16] 周炜.飞机自动化装配工业机器人精度补偿方法与试验研究[D].南京:南京航空航天大学, 2012. ZHOU Wei. Compensation method of industrial robot accuracy and experimental research for aircraft automated assembly[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012. |