Journal of Mechanical Engineering ›› 2022, Vol. 58 ›› Issue (6): 26-41.doi: 10.3901/JME.2022.06.026
Previous Articles Next Articles
TENG Hongzhao1,2, DENG Zhaohui1,2, Lü Lishu3, GU Qianwei1,2, LIU Tao1,2, ZHUO Rongjin1,2
Received:
2021-06-05
Revised:
2021-12-07
Online:
2022-03-20
Published:
2022-05-19
CLC Number:
TENG Hongzhao, DENG Zhaohui, Lü Lishu, GU Qianwei, LIU Tao, ZHUO Rongjin. Research of Process Condition Monitoring Based on Multi-sensor Information Fusion[J]. Journal of Mechanical Engineering, 2022, 58(6): 26-41.
[1] 郁文贤,雍少为,郭桂蓉. 多传感器信息融合技术述评[J]. 国防科技大学学报,1994,16(3):1-11. YU Wenxian,YONG Shaowei,GUO Guirong. Review of multi sensor information fusion technology[J]. Journal of National University of Defense Technology,1994,16(3):1-11. [2] 赵望达,段方英,徐志胜. 基于信息融合的智能安全监控自动化系统[J]. 中国安全科学学报,2005,15(4):106-108,114. ZHAO Wangda,DUAN Fangying,XU Zhisheng. Intelligent safety monitoring automation system based on information fusion[J]. China Safety Science Journal,2005,15(4):106-108,114. [3] 刘强,卓洁,郎自强,等. 数据驱动的工业过程运行监控与自优化研究展望[J]. 自动化学报,2018,44(11):1944-1956. LIU Qiang,ZHUO Jie,LANG Ziqiang. Perspectives on data-driven operation monitoring and self-optimization of industrial processes[J]. Acta Automatica Sinica,2018,44(11):1944-1956. [4] JI Hongyan,YUAN Yanhu,CHAO Zhongguo. Rotor unbalance fault diagnosis using DBN based on multi-source heterogeneous information fusion[J]. Procedia Manufacturing,2019,35:1184-1189. [5] 沈长青,汤盛浩,江星星,等. 独立自适应学习率优化深度信念网络在轴承故障诊断中的应用研究[J]. 机械工程学报,2019,55(7):81-88. SHEN Changqing,TANG Shenghao,JIANG Xingxing,et al. Bearings fault diagnosis based on improved deep belief network by self-individual adaptive learning rate[J]. Journal of Mechanical Engineering,2019,55(7):81-88. [6] 毕盛,刘皓熙,闵华清,等. 基于多传感器信息融合的仿人机器人跌倒检测及控制[J]. 华南理工大学学报,2017,45(1):95-101. BI Sheng,LIU Haoxi,MIN Huaqing,et al. Falling detection and control of humanoid robots based on multi-sensor information fusion[J]. Journal of South China University of Technology,2017,45(1):95-101. [7] 王昕煜,平雪良. 基于多传感器融合信息的移动机器人速度控制方法[J]. 工程设计学报,2021,28(1):13-21. WANG Xinyu,PING Xueliang. Speed control method of mobile robot based on multi-sensor fusion information [J]. Chinese Journal of Engineering Design,2021,28(1):13-21. [8] 周济. 智能制造——“中国制造2025”的主攻方向[J]. 中国机械工程,2015,26(17):2273-2284. ZHOU Ji. Intelligent mannfacturing——Main direction of “Made in China 2025”[J]. China Mechanical Engineering,2015,26(17):2273-2284. [9] LINAS J,HALL D L. An introduction to multi-sensor data fusion[C/CD]//IEEE International Symposium on Circuits & Systems. IEEE,1998. [10] BAHR B,MOTAVALLI S,ARFI T. Sensor fusion for monitoring machine tool conditions[J]. International Journal of Computer Integrated Manufacturing,1997,10(5):314-323. [11] CHEN S L,JEN Y W. Data fusion neural network for tool condition monitoring in CNC milling machining[J]. International Journal of Machine Tools & Manufacture,2000,40(3):381-400. [12] ZHANG X Y,LU X,WANG S,et al. A multi-sensor based online tool condition monitoring system for milling process[J]. Procedia CIRP,2018,72:1136-1141. [13] HABER R E,JOSE E,PERES C R,et al. An investigation of tool-wear monitoring in a high-speed machining process[J]. Sensors and Actuators A:Physical,2004,116(3):539-545. [14] SCHEFFER C,HEYNS P S. Wear monitoring in turning operations using vibration and strain measurements[J]. Mechanical Systems & Signal Processing,2001,15(6):1185-1202. [15] ALIUSAOGLU C,ERTUNC H M,OCAK H. Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system[J]. Mechanical Systems & Signal Processing,2009,23(2):539-546. [16] NASIR V,SASSANI F. A review on deep learning in machining and tool monitoring:Methods,opportunities,and challenges[J]. The International Journal of Advanced Manufacturing Technology,2021,115:2683-2709. [17] XU Ke ,LI Yingguang,LIU Changqing,et al. Advanced data collection and analysis in data-driven manufacturing process[J]. Chinese Journal of Mechanical Engineering,2020,33(3):40-60. [18] KONG Lingbao,PENG Xing,CHEN Yao,et al. Multi-sensor measurement and data fusion technology for manufacturing process monitoring:A literature review[J]. International Journal of Extreme Manufacturing,2020,2(2):5-31. [19] HE Baofeng,WEI Cui’e,DING Siyuan,et al. A survey of methods for detecting metallic grinding burn[J]. Measurement,2019,134:426-439. [20] MAJUMDER B D,ROY J K,PADHEE S. Recent advances in multifunctional sensing technology on a perspective of multi-sensor system:A review[J]. IEEE Sensors Journal,2018(99):1558-1748. [21] 刘献礼,刘强,岳彩旭,等. 切削过程中的智能技术[J]. 机械工程学报,2018,54(16):45-61. LIU Xianli,LIU Qiang,YUE Caixu,et al. Intelligent machining technology in cutting process[J]. Journal of Mechanical Engineering,2018,54(16):45-61. [22] LAURO C H,BRAND O L C,BALDO D,et al. Monitoring and processing signal applied in machining processes:A review[J]. Measurement,2014,58:73-86. [23] KHALEGHI B,KHAMIS A,KARRAY F O,et al. Multisensor data fusion:A review of the state-of-the-art[J]. Information Fusion,2013,14(1):28-44. [24] ABELLAN J V,FERNANDO R S. A review of machining monitoring systems based on artificial intelligence process models[J]. International Journal of Advanced Manufacturing Technology,2010,47(1-4):237-257. [25] ZHU K,WONG Y S,HONG G S. Wavelet analysis of sensor signals for tool condition monitoring:A review and some new results[J]. International Journal of Machine Tools & Manufacture,2009,49(7-8):537-553. [26] REHORN A G,JIANG J,ORBAN P E. State-of-the-art methods and results in tool condition monitoring:A review[J]. International Journal of Advanced Manufacturing Technology,2005,26(7-8):942. [27] KARPUSCHEWSKI B,INSASKI I. Monitoring systems for grinding processes[M]. London:Springer,2006. [28] 王志学,刘献礼,李茂月,等. 切削加工颤振智能监控技术[J]. 机械工程学报,2020,56(24):1-23. WANG Zhixue,LIU Xianli,LI Maoyue,et al. Intelligent monitoring and control technology of cutting chatter[J]. Journal of Mechanical Engineering,2020,56(24):1-23. [29] LI Xiaoli. A brief review:Acoustic emission method for tool wear monitoring during turning[J]. International Journal of Machine Tools & Manufacture,2002,42(2):157-165. [30] TETI R,JEMIELNIAK K,O’DONNELL G,et al. Advanced monitoring of machining operations[J]. CIRP Annals - Manufacturing Technology,2010,59(2):717-739. [31] CHO D W,LEE S J,CHE C N. The state of machining process monitoring research in Korea[J]. International Journal of Machine Tools & Manufacture,1999,39(11):1697-1715. [32] 巩亚东,吕洋,王宛山,等. 基于多传感器融合的磨削砂轮钝化的智能监测[J]. 东北大学学报,2003(3):248-251. KONG Yadong,Lü Yang,WANG Wanshana,et al. Intelligent monitoring for grinding wheel passivation based on multi-sensor fusion[J]. Journal of Northeastern University,2003(3):248-251. [33] KUIJANIC E,SORTINO M,TOTIS G. Multisensor approaches for chatter detection in milling[J]. Journal of Sound and Vibration,2008,312(4-5):672-693. [34] DEIAB I,ASSALEH K,HAMMAD F. On modeling of tool wear using sensor fusion and polynomial classifiers[J]. Mechanical Systems & Signal Processing,2009,23(5):1719-1729. [35] 林峰,焦慧锋,傅建中. 基于贝叶斯网络的平面磨削状态智能监测技术研究[J]. 中国机械工程,2011,22(11):1269-1273. LIN Feng,JIAO Huifeng,FU Jianzhong. Research on intelligent monitoring technique of machining state for surface grinder based on bayesian network[J]. China Mechanical Engineering,2011,22(11):1269-1273. [36] 李国龙,李彪,蒋林,等. 基于HHT和IPSO算法优化RBF神经网络的滚刀磨损状态识别方法[J]. 吉林大学学报,2020,50(6):1998-2009. LI Guolong,LI Biao,JIANG Lin,et al. Hob wear recognition method based on HHT and IPSO-RBF neural network[J]. Journal of Jilin University,2020,50(6):1998-2009. [37] MCMICHAEL D W,OKELLO N N. Maximum likelihood registration of dissimilar sensors[C]//Australian Data Fusion Symposium,IEEE Xplore,1996:31-34. [38] 房启成,刘璐,何建樑,等. 基于多源信息融合与随机映射的机床故障诊断[J]. 组合机床与自动化加工技术,2020(10):94-97. FANG Qicheng,LIU Lu,HE Jiancheng,et al. Machine tool fault diagnosis based on multi-source information fusion and random projection[J]. Modular Machine Tool & Automatic Manufacturing Technique,2020(10):94-97. [39] GHOSH N,RAVI Y B,PATRA A,et al. Estimation of tool wear during CNC milling using neural network-based sensor fusion[J]. Mechanical Systems & Signal Processing,2007,21(1):466-479. [40] 贾朱植,董立文,董勃,等. Fourier变换和Gabor变换与小波变换的比较研究[J]. 鞍山科技大学学报,2005,28(1):12-16. JIA Zhuzhi,DONG Liwen,DONG Bo,et al. Comparsion study of Fourier transform,Gabor transform and wavelet transform[J].Journal of Anshan University of Science and Technology,2005,28(1):12-16. [41] ARUN A,KRISHNASWAMY R,UNNIKRISHNAN D,et al. Tool condition monitoring of cylindrical grinding process using acoustic emission sensor[J]. Materials Today:Proceedings,2018,5(5):11888-11899. [42] 于光,李鹏,赵清亮,等. 超精密加工表面特性的功率谱密度表征与分析[J]. 哈尔滨工业大学学报,2010,42(1):29-32. YU Guang,LI Peng,ZHAO Qingliang,et al. Characterization of ultra-precision machined surfaces with power spectral density[J]. Journal of Harbin Institute of Technology,2010,42(1):29-32. [43] COHEN L. Time-frequency distributions:A review[J]. Proceedings of the IEEE,1989,77(7):941-981. [44] 臧玉萍,张德江,王维正. 基于小波变换技术的发动机异响故障诊断[J]. 机械工程学报,2009,45(6):239-245. ZANG Yuping,ZHANG Dejiang,WANG Weizheng. Fault diagnosis of engine abnormal sound based on wavelet transform technique[J]. Journal of Mechanical Engineering,2009,45(6):239-245. [45] 谢平,刘彬. 一种基于小波网络的切削刀具故障监测[J].机械工程学报,2002,38(2):108-111. XIE Ping,LIU Bin. Fault monitoring of cutting tool based on wavelet network[J]. Journal of Mechanical Engineering,2002,38(2):108-111. [46] JAMES G,WITTEN D,HASTIE T,et al. An introduction to statistical learning Volume 103:Linear regression[J]. Springer Texts in Statistics,2013(1):1-14. [47] LI Lingjun,LIU Shigang,PENG Yali,et al. Overview of principal component analysis algorithm[J]. International Journal for Light and Electron Optics,2016,127(9):3935-3944. [48] SIMEONE A,SEGRETO T,TETI R. Residual stress condition monitoring via sensor fusion in turning of inconel 718[J]. Procedia CIRP,2013,12:67-72. [49] XU Y,ZHANG D,SONG F,et al. A method for speeding up feature extraction based on KPCA[J]. Neurocomputing,2007,70(4-6):1056-1061. [50] 廖小平,黎宇嘉,陈超逸,等. 基于核主成分和灰狼优化算法的刀具磨损状态识别[J]. 计算机集成制造系统,2020,26(11):3031-3039. LIAO Xiaoping,LI Yujia,CHEN Chaoyi,et al. Tool wear condition recognition based on kernel principal component and grey wolf optimizer algorithm[J]. Computer Integrated Manufacturing Systems,2020,26(11):3031-3039. [51] PARK T,CASELLA G. The Bayesian lasso[J]. Journal of the American Statistical Association,2008,103(482):681-686. [52] LU Z,WANG M,DAI W,et al. In-process complex machining condition monitoring based on deep forest and process information fusion[J]. The International Journal of Advanced Manufacturing Technology,2019,104:1953-1966. [53] 杨占玺,韩秋实,孙志永. 多传感器信息融合及其在加工过程中的应用现状[J]. 现代制造工程,2007(10):94-96. YANG Zhanxi,HAN Qiushi,SUN Zhiyong. A review about multi-sensor information fusion and its application in machining process [J]. Modern Manufacturing Engineering,2007(10):94-96. [54] 杨剑锋,乔佩蕊,李永梅,等. 机器学习分类问题及算法研究综述[J]. 统计与决策,2019,35(6):36-40. YANG Jianfeng,QIAO Peirui,LI Yongmei,et al. A survey of machine learning classification problems and algorithms[J]. Statistics & Decision,2019,35(6):36-40. [55] 简小刚,贾鸿盛,石来德. 多传感器信息融合技术的研究进展[J]. 中国工程机械学报,2009,7(2):227-232. JIAN Xiaogang,JIA Hongsheng,SHI Laide. Advances on multi-sensor information fusion technologies[J]. Chinese Journal of Construction Machinery,2009,7(2):227-232. [56] 徐玲,杨丹,王时龙,等. 基于进化神经网络的刀具寿命预测[J]. 计算机集成制造系统,2008(1):167-171,182. XU Lin,YANG Dan,WANG Shilong,et al. Prediction of cutting tool life based on evolutionary neural network[J]. Computer Integrated Manufacturing Systems,2008(1):167-171,182. [57] 陈廉清,郭建亮,杨勋,等. 基于进化神经网络的磨削粗糙度预测模型[J]. 计算机集成制造系统,2013,19(11):2854-2863. CHEN Lianqing,GUO Jianliang,YANG Xun,et al. Grinding roughness prediction model based on evolutionary artificial neural network[J]. Computer Integrated Manufacturing Systems,2013,19(11):2854- 2863. [58] 李振雨,王好臣,王功亮,等. 基于BP网络的机床主轴故障诊断研究[J]. 机械设计与制造,2019(10):130-133,139. LI Zhengyu,WANG Haocheng,WANG Gongliang,et al. Research of spindle fault diagnosis based on BP neural network[J]. Machinery Design & Manufacture,2019(10):130-133,139. [59] 彭彬彬,闫献国,杜娟. 基于BP和RBF神经网络的表面质量预测研究[J]. 表面技术,2020,49(10):324-328,337. PENG Binbin,YAN Xianguo,DU Juan. Surface quality prediction based on BP and RBF neural networks[J]. Surface Technology,2020,49(10):324-328,337. [60] 余凯,贾磊,陈雨强,等. 深度学习的昨天、今天和明天[J]. 计算机研究与发展,2013,50(9):1799-1804. YU Kai,JIA Lei,CHEN Yuqiang,et al. Yesterday,today and tomorrow of deep learning[J]. Journal of Computer Research and Development,2013,50(9):1799-1804. [61] AREL I,ROSE D C,KARNWSKI T P. Research frontier:Deep machine learning--a new frontier in artificial intelligence research[J]. IEEE Computational Intelligence Magazine,2010,5(4):13-18. [62] 严春满,王铖. 卷积神经网络模型发展及应用[J]. 计算机科学与探索,2021,15(1):27-46. YAN Chunman,WANG Cheng. Development and application of convolutional neural network model[J]. Journal of Frontiers of Computer Science and Technology,2021,15(1):27-46. [63] 胡越,罗东阳,花奎,等. 关于深度学习的综述与讨论[J]. 智能系统学报,2019,14(1):1-19. HU Yue,LUO Dongyang,HUA Kui,et al. Review and Discussion on deep learning[J]. CAAI Transactions on Intelligent Systems,2019,14(1):1-19. [64] 何彦,凌俊杰,王禹林,等. 基于长短时记忆卷积神经网络的刀具磨损在线监测模型[J]. 中国机械工程,2020,31(16):1959-1967. HE Yan,LIN Junjie,WANG Yulin,et al. In-process tool wear monitoring model based on LSTM-CNN[J]. China Mechanical Engineering,2020,31(16):1959-1967. [65] 赵金坠,冯克明,邢波. 磨削加工监测技术研究进展[J]. 制造技术与机床,2017(12):52-57,61. ZHAO Jinzhui,FENG Keming,XING Bo. Research progress of grinding monitoring technology[J]. Manufacturing Technology & Machine Tool,2017(12):52-57,61. [66] CAGGIANO A. Tool wear prediction in Ti-6Al-4V machining through multiple sensor monitoring and PCA features pattern recognition[J]. Sensors,2018,18(3):823. [67] SEGRETO T,SIMRONE A,TETI R. Sensor fusion for tool state classification in nickel superalloy high performance cutting[J]. Procedia CIRP,2012,1(1):593- 598. [68] TETI R,SEGRETO T. Residual stress assessment in inconel 718 machining through wavelet sensor signal analysis and sensor fusion pattern recognition[J]. Procedia CIRP,2013,9:103-108. [69] KENEN A P,CHOUDHURY S K. Analytical modeling of tool health monitoring system using multiple sensor data fusion approach in hard machining[J]. Measurement,2019,145:118-129. [70] KULJIANICC E,TOYIDS G,SORTINO M. Development of an intelligent multisensor chatter detection system in milling[J]. Mechanical Systems and Signal Processing,2009,23(5):1704-1718. [71] XIE Nan,ZHENG Beirong,XIE Xiaowen,et al. Research on the multi-sensor fusion-based tool condition recognition system[C]//Proceedings of the World Congress on Intelligent Control and Automation (WCICA). 2015,2015:5545- 5549. [72] TORABI A J,ER M J,LI X,et al. Application of clustering methods for online tool condition monitoring and fault diagnosis in high-speed milling processes[J]. IEEE Systems Journal,2017,10(2):721-732. [73] KUNTOGLU M,SAGLAM H. Investigation of signal behaviors for sensor fusion with tool condition monitoring system in turning[J]. Measurement,2021,173:1-15. [74] LIU C,LI Y,ZHOU G,et al. A sensor fusion and support vector machine based approach for recognition of complex machining conditions[J]. Journal of Intelligent Manufacturing,2018,29(8):1739-1752. [75] YAN P D,VIGNEASH W,CAESA R,et al. In-process tool condition monitoring in compliant abrasive belt grinding process using support vector machine and genetic algorithm[J]. Journal of Manufacturing Processes,2018,31:199-213. [76] KAYA B,OYSU C,ERTUNC H M,et al. A support vector machine-based online tool condition monitoring for milling using sensor fusion and a genetic algorithm[J]. Proceedings of the Institution of Mechanical Engineers Part B:Journal of Engineering Manufacture,2012,226(11):1808-1818. [77] Al H A,GINDY N. A new approach for systematic design of condition monitoring systems for milling processes[J]. Journal of Materials Processing Technology,2000,107(1-3):243-251. [78] MA M,SUN C,CHEN X,et al. A deep coupled network for health state assessment of cutting tools based on fusion of multisensory signals[J]. IEEE Transactions on Industrial Informatics,2019,15(12):1-10. [79] GUO W,LI B,ZHOU Q. An intelligent monitoring system of grinding wheel wear based on two-stage feature selection and long short-term memory network[J]. Proceedings of the Institution of Mechanical Engineers Part B:Journal of Engineering Manufacture,2019,233(13):1-11. [80] HUANG Z,ZHU J,LEI J,et al. Tool wear predicting based on multi-domain feature fusion by deep convolutional neural network in milling operations[J]. Journal of Intelligent Manufacturing,2020,31:1-14. [81] HUANG Z,ZHU J,LEI J,et al. Tool wear predicting based on multisensory raw signals fusion by reshaped time series convolutional neural network in manufacturing[J]. IEEE Access,2019,7:178640-178651. [82] WANG W H,HONG G S,WONG Y S,et al. Sensor fusion for online tool condition monitoring in milling[J]. International Journal of Production Research,2007,45(21):5095-5116. [83] 李锡文,杨明金,谢守勇,等. 基于神经网络信息融合的铣刀磨损状态监测[J]. 农业机械学报,2007(7):160-163. LI Xiwen,YNAG Mingjin,XIE Shouyong,et al. Wear condition monitoring of helical cutters based on neural network information infusion method[J]. Transactions of the Chinese Society for Agricultural Machinery,2007(7):160-163. [84] 毕果,郭隐彪,韩伟. 基于信息融合的精密磨削砂轮磨损状态在线识别方法研究[J]. 机械强度,2013,35(6):737-742. BI Guo,GUO Yingbiao,HAN Wei. On-line identtification of wheel wear condition in precision grinding based on information fusion[J]. Journal of Mechanical Strength,2013,35(6):737-742. [85] 郭维诚,李蓓智,杨建国,等. 磨削过程信号监测与砂轮磨损预测模型构建[J]. 上海交通大学学报,2019,53(12):1475-1481. GUO Weicheng,LI Peizhi,YANG Jianguo,et al. Monitoring of grinding signals and development of wheel wear prediction model[J]. Journal of Shanghai Jiao Tong University,2019,53(12):1475-1481. [86] GRIFFIN J M,CHEN X. Multiple classification of the acoustic emission signals extracted during burn and chatter anomalies using genetic programming[J]. International Journal of Advanced Manufacturing Technology,2009,45(11-12):1152. [87] YANG Z,YU Z,XIE C,et al. Application of Hilbert–Huang Transform to acoustic emission signal for burn feature extraction in surface grinding process[J]. Measurement,2014,47:14-21. [88] KANNAN K,ARUNACHALAM N,CHAWLA A,et al. Multi-sensor data analytics for grinding wheel redress life estimation:An approach towards industry 4.0[J]. Procedia Manufacturing,2018,26:1230-1241. [89] TANGJITSTCHAROEN,SOMKIAT. Prediction of surface roughness on CNC turning based on monitoring of cutting force and cutting temperature[J]. Advanced Materials Research,2013,690-693:2540-2549. [90] 王明微,周竞涛,敬石开,等. 基于贝叶斯网络的切削加工表面粗糙度在线监测方法[J]. 计算机集成制造系统,2014,20(12):3075-3081. WANG Mingwei,ZHOU Jingtao,JING Shikai,et al. Surface roughness monitoring method based on Bayesian network models[J]. Computer Integrated Manufacturing Systems,2014,20(12):3075-3081. [91] SEGRETO T,KARAM S,TETI R. Signal processing and pattern recognition for surface roughness assessment in multiple sensor monitoring of robot-assisted polishing[J]. The International Journal of Advanced Manufacturing Technology,2017,90(1):1023-1033. [92] 郭力,郭君涛,李波. 工程陶瓷磨削声发射和磨削温度磨削力联合监测的研究[J]. 机械科学与技术,2021,40(2):243-248. GUO Li,GUO Juntao,LI Bo. Joint monitoring of acoustic emission and grinding temperature and grinding force in engineering ceramics grinding[J]. Mechanical Science and Technology for Aerospace Engineering,2021,40(2):243-248. [93] 谢楠,周俊锋,郑蓓蓉. 考虑能耗的多传感器融合加工表面粗糙度预测方法[J]. 表面技术,2018,47(9):249-258. XIE Nan,ZHOU Junfeng,ZHENG Peirong. An approach for surface roughness prediction in machining based on multi-sensor fusion considering energy consumption[J]. Surface Technology,2018,47(9):249-258. [94] YIN S,NGUYEN D T,CHEN F J,et al. Application of compressed air in the online monitoring of surface roughness and grinding wheel wear when grinding Ti-6Al-4V titanium alloy[J]. International Journal of Advanced Manufacturing Technology,2019,101(1-4):1315-1331. [95] KANG H,ZHUANZHE Z,MINPING J,et al. Dynamic Bayesian Network-based Approach by Integrating Sensor Deployment for Machining Process Monitoring[J]. IEEE Access,2018,6:33365-33372. [96] BHASKAR B,VAIRAMUTHU R,RAMESH B N,et al. Process-machine interactions and a multi-sensor fusion approach to predict surface roughness in cylindrical plunge grinding process[J]. Procedia Manufacturing,2018,26:700-711. [97] ABOUELATTA O B,MADL J. Surface roughness prediction based on cutting parameters and tool vibrations in turning operations[J]. Journal of Materials Processing Tech.,2001,118(1):269-277. [98] 陈雪峰,张兴武,曹宏瑞. 智能主轴状态监测诊断与振动控制研究进展[J]. 机械工程学报,2018,54(19):58-69. CHEN Xuefeng,ZHANG Xingwu,CAO Hongrui. Research Progress on condition monitoring diagnosis and vibration control of intelligent spindle[J]. Journal of Mechanical Engineering,2018,54(19):58-69. [99] 姚家伦,李龙森. 机床齿轮箱智能振动故障诊断专家系统[J]. 振动与冲击,1988(3):73-78. YAO Jialun,LI Longsen. Intelligent vibration fault diagnosis expert system for machine tool gearbox[J]. Journal of Vibration and Shock,1988,7(3):73-78. [100] JIAO J,ZHAO M,LIN J,et al. A comprehensive review on convolutional neural network in machine fault diagnosis[J]. Neurocomputing,2020,417:36-63. [101] DURO J A,PADGET J A,BOWEN C R,et al. Multi-sensor data fusion framework for CNC machining monitoring[J]. Mechanical Systems & Signal Processing,2016,66-67:505-520. [102] YING Huang,ZHAO Wanhua,LU Bingheng. A novel methodology on the state estimation of the machine tools based on the multi-sensor information fusion in time-frequency space[C]//IEEE International Symposium on Assembly and Manufacturing (ISAM),Xi’an,2013:352-356. [103] 邓超,孙耀宗,李嵘,等. 基于隐Markov模型的重型数控机床健康状态评估[J]. 计算机集成制造系统,2013,19(3):552-558. DENG Chao,SUN Yaozong,LI Rong,et al. Hidden markov model based on the heavy-duty CNC health state estimate[J]. Computer Integrated Manufacturing Systems,2013,19(3):552-558. [104] 朱宏波. 基于多传感器信息融合的数控机床状态监测系统[D]. 北京:北京邮电大学,2019. ZHU Hongbo. Condition monitoring system of CNC machine tool based on multi sensor information fusion[D]. Beijing :Beijing University of Posts and Telecommunications,2019. [105] 刘丽冰,李曼,李莉,等. 基于多源信息融合的数控机床不停机诊断研究[J]. 制造技术与机床,2016(8):109-115. LIU Libing,LI Man,LI Li. et al. Research on on line diagnosis of CNC machine tool based on multi source information fusion[J]. Manufacturing Technology & Machine Tool,2016(8):109-115. [106] 史天运,王信义,袁洪芳. 柔性加工单元的状态监测与故障诊断研究[J]. 北京理工大学学报,1998(5):567-572. SHI Tianyun,WANG Xinyi,YUAN Hongfang. Research on condition monitoring and fault diagnosis of flexible machining unit[J]. Transactions of Beijing Institute of Technology,1998(5):567-572. [107] 翟鹏,史铁林,陈培林,等. 数控机床故障诊断专家系统的设计[J]. 振动.测试与诊断,1997(2):38-43. QU Peng,SHI Tielin,CHEN Peilin,et al. Design of fault diagnosis expert system for CNC machine tools[J]. Journal of Vibration,Measurement & Diagnosis,1997(2):38-43. [108] 刘世豪,张云顺,王宏睿. 数控机床主轴优化设计专家系统研究[J]. 农业机械学报,2016,47(4):372-381. LIU Shihao,ZHANG Yunshun,WANG Hongrui. Optimization design expert system of CNC machine tool spindle[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(4):372-381. [109] 王远航,邓超,吴军,等. 基于混合型专家系统的重型机床故障诊断[J]. 计算机集成制造系统,2010,16(10):2139-2147. WANG Yuanhang,DENG Chao,WU Jun,et al. Mixed-expert-system-based fault diagnosis for heavy machine[J]. Computer Integrated Manufacturing Systems,2010,16(10):2139-2147. [110] 陈国荣,鄢萍,刘飞,等. 滚齿机网络化故障诊断专家系统的设计及应用[J]. 重庆大学学报,2010,33(5):62-71. CHEN Guorong,YAN Ping,LIU Fei,et al. Networked fault diagnosis expert system of hobbing machine[J]. Journal of Chongqing University,2010,33(5):62-71. [111] 张根保,唐贤进,许智,等.数控机床基于状态监测的视情维修决策研究[J]. 机械科学与技术,2012,31(2):182-185. ZHANG Genbao,TANAG Xianjin,XU Zhi,et al. Research on condition based maintenance decision of CNC[J]. Mechanical Science and Technology for Aerospace Engineering,2012,31(2):182-185. [112] 谷振宇,何彦,刘军. 基于运行信息融合的大型设备视情维修系统[J]. 计算机集成制造系统,2010,16(10):2094-2100. GU Zhenyu,HE Yan,LIU Jun. Condition-based maintenance system for large equipment based on running information fusion[J]. Computer Integrated Manufacturing Systems,2010,16(10):2094-2100. [113] HUANG M,LIU Z,TAO Y. Mechanical fault diagnosis and prediction in IoT based on multi-source sensing data fusion[J]. Simulation Modelling Practice and Theory,2019,102:1-19. |
[1] | LAI Xuwei, DING Kun, ZHANG Kai, HUANG Fengfei, ZHENG Qing, LI Zhixuan, DING Guofu. Improved Interpretable-based Physically Guided Spatial Attention for Cross-process Parameters End Milling Cutter Wear Identification [J]. Journal of Mechanical Engineering, 2024, 60(12): 147-157. |
[2] | DU Jianbiao, ZHANG Qiang, ZONG Wenjun. Summary of Single Point Diamond Turning Technology for Hard, Brittle and ferrous Metal Materials [J]. Journal of Mechanical Engineering, 2023, 59(7): 156-175. |
[3] | HUANG Jingshan, LIU Guoliang, SUN Hao, YAO Bin, JIN Lin, CHEN Binqiang, CAO Xincheng, WANG Shancheng, XU Hao, CAI Zhiqin. Effect of C60 Nanoparticle Cutting Fluid on Cutting Characteristics of 15Cr14Co12Mo5Ni2WA Gear Steel [J]. Journal of Mechanical Engineering, 2023, 59(23): 358-371. |
[4] | LIU Hongcheng, YUAN Dezhi, ZHU Kunpeng. Tool Wear Prediction Based on Gaussian Process Latent Force Model [J]. Journal of Mechanical Engineering, 2023, 59(17): 310-324. |
[5] | CHEN Ruiqi, LI Wenxin, WANG Chuanyang, YANG Hongbing. Interactive Operation Agent Scheduling Method for Job Shop Based on Deep Reinforcement Learning [J]. Journal of Mechanical Engineering, 2023, 59(12): 78-88. |
[6] | DUAN Jian, ZHOU Hongdi, LIU Zhiyong, ZHAN Xiaobin, LIANG Jianqiang, SHI Tielin. Milling Tool Wear Prediction Research Based on Optimized PCANet Model [J]. Journal of Mechanical Engineering, 2023, 59(1): 278-285. |
[7] | ZHANG Zhenyu, WU Jun, SONG Kefeng, GUO Zhaozhi, CHENG Jun. Study on Grinding Force and Machined Surface Quality in Ultra-fine Micro Grinding of Titanium Alloy [J]. Journal of Mechanical Engineering, 2022, 58(15): 75-91. |
[8] | ZHAO Guolong, XIA Hongjun, LI Liang, XIN Lianjia, HE Ning. Investigation on Laser-induced Controllable Oxidation Assisted Micro Milling of Titanium Aluminum Intermetallic Alloy [J]. Journal of Mechanical Engineering, 2021, 57(9): 254-263. |
[9] | LI Congbo, YU Bisheng, XIAO Qinge, SUN Xin, Lü Yan. A Cutting Parameter Energy-saving Optimization Method for CNC Turning Batch Processing Considering Tool Wear [J]. Journal of Mechanical Engineering, 2021, 57(1): 217-229. |
[10] | AN Hua, WANG Zhe, WANG Guofeng, SONG Qingyue, LIU Feng, ZHONG Caichuan. Research on On-line Monitoring of Surface Roughness in Composite Drilling and Adaptive Optimization of Parameters [J]. Journal of Mechanical Engineering, 2020, 56(2): 27-34,42. |
[11] | LI Ya, HUANG Yixiang, ZHAO Lujie, LIU Chengliang. Multi-condition Wear Evaluation of Tool Based on T-SNE and XGBoost [J]. Journal of Mechanical Engineering, 2020, 56(1): 132-140. |
[12] | LIU Jiajia, JIANG Xinggang, ZHANG Deyuan. Research on the Characteristics of Chips and Tool Flank Wear in High-speed Rotary Ultrasonic Elliptical Machining for Side Milling of Ti-6Al-4V [J]. Journal of Mechanical Engineering, 2019, 55(19): 186-194. |
[13] | CHEN Tao, SONG Lixing, LI Suyan, GUO Jian, LIU Xianli. Research into Chip Flow and Tool Wear in Hard Cutting Using Tool with Variable Strengthening Edge [J]. Journal of Mechanical Engineering, 2019, 55(19): 195-200. |
[14] | DING Baoyang, BAI Qian, LIU Julong, ZHANG Bi. A Novel Method for Tool Wear Prediction in Titanium Milling by Simulink Feedback Method [J]. Journal of Mechanical Engineering, 2019, 55(11): 224-232. |
[15] | ZHAO Shuai, HUANG Yixiang, WANG Haoren, LIU Chengliang, LIU Xiao, LIANG Xinguang. Random Forest and Principle Components Analysis Based on Health Assessment Methodology for Tool Wear [J]. Journal of Mechanical Engineering, 2017, 53(21): 181-189. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||