[1] KLEINER M,CHATTI S,KLAUS A. Metal forming techniques for lightweight construction[J]. Journal of Materials Processing Technology,2006,177(1-3):2-7. [2] 李永兵,李亚庭,楼铭,等. 轿车车身轻量化及其对连接技术的挑战[J]. 机械工程学报,2012,48(18):44-54. LI Yongbing,LI Yating,LOU Ming,et al. Lightweighting of car body and its challenges to joining technologies[J]. Journal of Mechanical Engineering,2012,48(18):44-54. [3] 蒋浩民,俞宁峰,陈新平,等. 温模条件下镀锌钢板摩擦行为研究[J]. 塑性工程学报,2006,13(1):40-42. JIANG Haomin,YU Ningfeng,CHEN Xinping,et al. Study on the frictional behavior of zine-coated sheet in warm die[J]. Journal of Plasticity Engineering,2006,13(1):40-42. [4] SACHDEV A,HUNTER J. Thermal effects during uniaxial straining of steels[J]. Metallurgical Transactions A,1982,13(6):1063-1067. [5] 王文平. 涉及应变速率及温度变化的汽车板快速连续冲压成形技术研究[D]. 北京:北京航空航天大学,2011. WANG Wenping. Research on rapid continuous stamping technology of auto sheet concerning strain rate and temperature[D]. Beijing:Beihang University,2011. [6] 王文平,刁可山,吴向东,等. 板料屈服行为及强化规律的研究进展[J]. 机械工程学报,2013,49(24):7-14. WANG Wenping,DIAO Keshan,WU Xiangdong,et al. Review on yielding and hardening behavior of sheet metal[J]. Journal of Mechanical Engineering,2013,49(24):7-14. [7] NAKA T,NAKAYAMA Y,UEMORI T,et al. Effects of temperature on yield locus for 5083 aluminum alloy sheet[J]. Journal of Materials Processing Technology,2003,140(1-3):494-499. [8] NAKA T,UEMORI T,HINO R,et al. Effects of strain rate, temperature and sheet thickness on yield locus of AZ31 magnesium alloy sheet[J]. Journal of Materials Processing Technology,2008,201(1-3):395-400. [9] MERKLEIN M,GEIGER M. Characterization of yielding behavior of sheet metal under biaxial stress condition at elevated temperatures[J]. CIRP Annals-Manufacturing Technology,2008,57(1):269-274. [10] ABEDRABBO N,POURBOGHRAT F,CARSLEY J. Forming of aluminum alloys at elevated temperatures, Part 1:Material characterization[J]. International Journal of Plasticity,2006,22(2):314-341. [11] ABEDRABBO N,POURBOGHRAT F,CARSLEY J. Forming of aluminum alloys at elevated temperatures, Part 2:Numerical modeling and experimental verification[J]. International Journal of Plasticity,2006,22(2):342-373. [12] SUNG J H,KIM J H,WAGONER R H. A plastic constitutive equation incorporating strain,strain-rate,and temperature[J]. International Journal of Plasticity,2010,26(12):1746-1771. [13] OZTURK F,TOROS S,KILIC S. Tensile and spring-back behavior of DP600 advanced high strength steel at warm temperatures[J]. International Journal of Iron and Steel Research,2009,16(6):41-46. [14] 舒建. 热环境板材屈服行为研究[D]. 北京:北京航空航天大学,2014. SHU Jian. Research on yield behavior of sheets under thermal environment[D]. Beijing:Beihang University,2014. [15] 王浩. 先进高强钢板屈服轨迹及强化规律的实验研究[D]. 北京:北京航空航天大学,2014. WANG Hao. Experimental study on yield locus and harding rule of advanced high strength steel[D]. Beijing:Beihang University,2014. [16] 吴向东. 不同加载路径下各向异性板料塑性变形行为的研究[D]. 北京:北京航空航天大学,2004. WU Xiangdong. Research on the plastic deformation behavior of anisotropic sheet metal under different loading paths[D]. Beijing:Beihang University,2004. [17] BARLAT F,BREM J C,YOON J W,et al. Plane stress yield function for aluminum alloy sheets,Part 1:Theory[J]. International Journal of Plasticity,2003,19(9):1297-1319. |