[1] 狄思思,李华峰. MFC及其发展现状[J]. 振动·测试与诊断, 2013(增刊2):157-160, 226. GENG Sisi, LI Huafeng. A review of macro fiber composite and its application[J]. Journal of Vibration,Measurement & Diagnosis, 2013(Suppl.2):157-160, 226.
[2] 高乐. 基于压电智能复合材料的振动主动控制[D]. 哈尔滨:哈尔滨工业大学, 2012 GAO Le. Active vibration control based on piezoelectric smart composite[D]. Harbin:Harbin Institute of Technology, 2012.
[3] 黄国平,李百明,肖勇,等. 压电材料的发展与展望[J]. 科技广场, 2010(1):208-210 HUANG Guoping, LI Baiming, XIAO Yong, et al. Development and prospect of piezoelectric material[J]. Science Mosaic, 2010(1):208-210.
[4] 何超,陈文革. 压电材料的制备应用及其研究现状[J]. 功能材料, 2010, 41(增刊1):11-13 HE Chao, CHEN Wenge. Fabrication and research and application of piezoelectric materials[J]. Journal of Functional Materials, 2010, 41(Suppl.1):11-13
[5] 裴先茹,高海荣. 压电材料的研究和应用现状[J]. 安徽化工, 2010, 36(3):4-6. PEI Xianru, GAO Hairong. The research state and influence of piezoelectric materials[J]. Anhui Chemical Industry, 2010, 36(3):4-6
[6] 范丽峰. 基于压电作动器MFC的柔性梁振动主动控制[D]. 大连:大连理工大学, 2014. FAN Haifeng. Active vibration control of flexible beam with piezoelectric actuator MFC[D]. Dalian:Dalian University of Technology, 2014.
[7] 罗亚军,蒋竺佟,葛东明, 等. 基于MFC的柔性机翼结构振动主动控制技术研究[C]//全国模态分析与试验学术会议, 2016:1 LUO Yajun, JIANG Zhutong, GE Dongming, et al. Research on active vibration control of flexible wing structure[C]//Proceedings of the 16th National Symposium on Modal Analysis and Experiment, 2016:1.
[8] 崔玉国,孙宝元,董维杰,等. 压电陶瓷执行器迟滞与非线性成因分析[J].光学精密工程, 2003, 11(3):270-275 CUI Yuguo, SUN Baoyuan, DONG Weijie, et al. Causes for hysteresis and nonlinearity of piezoelectric ceramic actuators[J]. Optics and Precision Engineering, 2003, 11(3):270-275
[9] 张涛,孙立宁,蔡鹤皋. 压电陶瓷基本特性研究[J]. 光学精密工程, 1998, 6(5):26-32. ZHANG Tao, SUN Lining, CAI Hegao. Study on the fundamental characteristics of piezoelectric element[J]. Optics and Precision Engineering, 1998, 6(5):26-32.
[10] 唐凤,黄尚廉,刘光聪. PZT非线性特性的研究[J]. 压电与声光, 1997(3):180-183. TANG Feng, HUANG Shanglian, LIU Guangcong. Study on non-linearity of PZT[J]. Piezoelectrics & Acoustooptics, 1997(3):180-183.
[11] HONG Tian, Chang T N. Control of nonlinearpiezoelectric stack using adaptive dither//American Control Conference, 1995. Proceedings of the IEEE Xplore, vol.11995:76-80.
[12] GUYOMAR D, AURELLE N, EVRAUD L. Piezoelectric ceramics nonlinear behavior. application to Langevin transducer[J]. Journal De Physique Ⅲ, 1997, 7(6):1197-1208.
[13] HWANG S C, MCMEEKING R M. A finite element model of ferroelectric polycrystals[J]. Ferroelectrics, 1998, 211(1):177-194.
[14] 宋召青,龙玉峰,孙俊平. 迟滞非线性系统的建模与控制研究综述[J]. 海军航空工程学院学报, 2014, 29(6):528-534. SONG Zhaoqing, LONG Yufeng, SUN Junping. General on modeling and control of hysteresis nonlinear system[J]. Journal of Naval Aeronautical and Astronautical University, 2014, 29(6):528-534
[15] 裘进浩,陈海荣,陈远晟,等. 压电驱动器的非对称迟滞模型[J]. 纳米技术与精密工程, 2012, 10(3):189-197. QIU Jinhao, CHEN Hairong, CHEN Yuansheng, et al. A model for asymmetric hysteresis of piezoelectric actuators[J]. Nanotechnology and Precision Engineering, 2012, 10(3):189-197.
[16] 朱炜,芮筱亭. 压电执行器的Bouc-Wen模型在线参数辨识[J]. 光学精密工程, 2015, 23(1):110-116. ZHU Wei, RUI Xiaoting. Online parameter identification of Bouc-Wen model for piezoelectric actuator[J]. Optics and Precision Engineering, 2015, 23(1):110-116.
[17] 陈辉,谭永红,周杏鹏,等. 压电陶瓷执行器的动态模型辨识与控制[J]. 光学精密工程, 2012, 20(1):88-95. CHEN Hui, TAN Yonghong, ZHOU Xingpeng et al. Identification and control of dynamic modeling for piezoceramic actuator[J]. Optics and Precision Engineering, 2012, 20(1):88-95.
[18] 李欣欣,王文,陈戬恒,等. Jiles-Atherton模型的超磁致伸缩驱动器磁滞补偿控制[J]. 光学精密工程, 2007(10):1558-1563. LI Xinxin, WANG Wen, CHEN Jianheng, et al. Hysteresis compensation of giant magnetostrictive actuator based on Jiles-Atherton model[J]. Optics and Precision Engineering, 2007(10):1558-1563.
[19] 郑凯,阎绍泽,温诗铸,等. 压电叠层作动器迟滞特性模型[J]. 清华大学学报, 2003(5):628-631. ZHENG Kai,YAN Shaoze,WEN Shizhu,et al. Hysteresis compensation in piezoelectric stack actuators[J]. Journal of Tsinghua University, 2003(5):628-631.
[20] 赵荣国. 类椭圆非线性迟滞隔振系统动力学模型[C/CD]//第八届全国振动理论及应用学术会议论文集摘要, 2003. ZHAO Rongguo. Ellipse-like dynamic model for nonlinear hysteretic vibration isolation system[C/CD]//Abstracts of proceedings of the Eighth National Symposium on vibration theory and Applications, 2003.
[21] 李以农,张锋,郑玲. 压电作动器的迟滞非线性建模和实时补偿控制仿真[J]. 功能材料, 2009, 40(8):1297-1301. LI Yinong, ZHANG Feng, ZHENG Ling. Modeling and real-time compensation control of nonlinear hysteresis for piezoelectric actuator[J]. Journal of Functional Materials, 2009, 40(8):1297-130.
[22] SCHROCK, JOHANNER, MEURER T, et al. Control of a flexible beam actuated by macro-fiber composite patches:Ⅱ. Hysteresis and creep compensation, experimental results[J]. Smart Materials & Structures, 2011, 20(1):015016.
[23] BAHASH S, JALILI N. Robust multiple frequency trajectory tracking control of piezoelectrically driven micro/nanopositioning systems[J]. IEEE Transactions on Control Systems Technology, 2007, 15(5):867-878.
[24] 郭国法,党选举. 基于PI模型的压电陶瓷执行器迟滞特性建模[J]. 微计算机信息, 2008(4):282-284. GUO Guofa, DANG Xuanju. Modeling for piezoceramic actuators based on PI model[J]. Microcomputer Information, 2008(4):282-284
[25] 郑军辉,崔玉国,蔡成波,等. 串联死区算子的压电钳PI迟滞模型[J]. 压电与声光, 2015, 37(4):650-654. ZHENG Junhui, CUI Yuguo, CAI Chengbo, et al. Research on PI hysteresis model with dead-zero operator of piezoelectric micro-gripper[J]. Piezoelectrics & Acoustooptics, 2015, 37(4):650-654
[26] 马宏伟,须颖,安冬,等. 基于三段PI模型的压电驱动器迟滞补偿方法[J]. 纳米技术与精密工程, 2017, 15(1):53-60. MA Hongwei, XU Ying, AN Dong, et al. Compensation of hysteresis on piezoelectric actuators based on tripartite PI model[J]. Nanotechnology and Precision Engineering, 2017, 15(1):53-60.
[27] 于志亮,刘杨,王岩, 等. 基于改进PI模型的压电陶瓷迟滞特性补偿控制[J]. 仪器仪表学报, 2017, 38(1):129-135. YU Zhiliang, LIU Yang, WANG Yan, et al. Hysteresis compensation and control of piezoelectric actuator based on an improved PI model[J]. Chinese Journal of Scientific Instrument, 2017, 38(1):129-135.
[28] 胡冰. 压电陶瓷执行器迟滞非线性模型研究[D]. 长春:吉林大学, 2015. HU Bing. Research of hysteresis nonlinear model for piezoelectric ceramic actuators[D]. Changchun:Jilin University, 2015.
[29] 张桂林,张承进,李康. 基于PI迟滞模型的压电驱动器自适应辨识与逆控制[J]. 纳米技术与精密工程, 2013, 11(1):85-89. ZHANG Guilin, ZHANG Chengjin, LI Kang. Adaptive identification and inverse control of piezoelectric actuators based on PI hysteresis model[J]. Nanotechnology and Precision Engineering, 2013, 11(1):85-89.
[30] 黄秀峰, 崔洪宇,洪明, 等. 振动控制中压电元件优化配置研究进展[J]. 压电与声光, 2015, 37(5):768-779 HUANG Xiufeng, CUI Hongyu, HONG Ming, et al. Advances in optimal allocation of piezoelectric sensor/actuator in structural vibration control[J]. Piezoelectrics & Acoustooptics, 2015, 37(5):768-779. |