[1] EDWARD H. Corrosion of zirconium-base alloys-an overview[C]//Zirconium in the Nuclear Industry,ASTM STP 633,Lowe Jr A L,Parry G W,Eds.,American Society for Testing and Materials,1977:211.
[2] 周汇东. 水冷动力堆燃料包壳材料——锆合金[M]. 北京:原子能出版社,1979. ZHOU Huidong. Nuclear fuel cladding for water-cooled reactor:zirconium alloy[M]. Beijing:Atomic Energy Press,1979.
[3] COX B,KRITSKY V G,LEMAIGNAN C,et al. Waterside corrosion of zirconium alloys in nuclear power plants[J]. IAEA TECDOC,1998,996:124.
[4] 周邦新,改善锆合金耐腐蚀性能的概述[J]. 金属热处理学报,1997,18(3):8-15. ZHOU Bangxin. The issues of improving corrosion resistance for zirconium alloys[J]. Trans. Met. Heat Treatment,1997,18(3):8-15.
[5] 杨忠波,赵文金. 锆合金耐腐蚀性能及氧化特性概述[J]. 材料导报,2010,24(9):120-125. YANG Zhongbo,ZHAO Wenjin. Review of corrosion and oxide characterization for Zr alloys[J]. Mater. Rev.,2010,24(9):120-125.
[6] MOTTA A T. Waterside corrosion in zirconium alloys[J]. JOM,2011,63(8):59-63.
[7] MOTTA A T,COUET A,COMSTOCK R J. Corrosion of zirconium alloys used for nuclear fuel cladding[J]. Annu. Rev. Mater. Res.,2015,45:311-343.
[8] YUEH H K,KESTERSON R L,COMSTOCK R J,et al. Improved ZIRLOTM cladding performance through chemistry and process modifications[J]. J. ASTM Int.,2005,2:330-346.
[9] BOSSIS P,PÊcheur D,HANIFI K. et al. Comparison of the high burn-up corrosion on M5 and low tin zircaloy-4[J]. J. ASTM Int.,2006,3:32.
[10] JEONG Y H,PARK S Y,LEE M H,et al. Out-of-pile and in-pile performance of advanced zirconium alloys (HANA) for high burn-up fuel[J]. J. Nuc. Sci. Tech.,2006,43(9):977-983.
[11] ZHOU HANGXIN,YAO MEIYI. Optimization of N18 zirconium alloy for fuel cladding of water reactors[J]. Journal of Materials Science & Technology,2012,28(7):606-613.
[12] 刘信荣,陈志奇,侯忠松. 先进沸水堆(ABWR)的特性与可用性[J]. 山东电力技术,1996,91(5):46-52. LIU Xinrong,CHEN Zhiqi,HOU Zhongsong. The feature of ABWR and its availability[J]. Shandong Electric Power,1996,91(5):46-52.
[13] 周蓝宇,齐实,周涛. 小型模块化反应堆发展趋势及前景[J]. 科技创新与应用,2017,21:195-196. ZHOU Lanyu,QI Shi,ZHOU Tao. Development and perspective of small module nuclear reactor[J]. Tech. Innov. Appl.,2017,21:195-196.
[14] BRADHURST D H,SHIRVINGTON P J,HEUER P M. The effect of radiation and oxygen on the aqueous oxidation of zirconium and its alloys at 290oC[J]. J. Nucl. Mater.,1973,46:53-76.
[15] KUMAR M K,AGGARWAL S,BENIWAL D,et al. Localized oxidation of zirconium alloys in high temperature and pressure oxidizing environments of nuclear reactors[J]. Mater. Corros.,2014,65(3):244-249.
[16] KUMAR M K,AGGARWAL S,KAIN V,et al. Effect of dissolved oxygen on oxidation and hydrogen pick up behavior:Zircaloy vs Zr-Nb alloys[J]. Nucl. Eng. Des.,2010,240:985-994.
[17] COX B. Some thoughts on the mechanisms of in-reactor corrosion of zirconium alloys[J]. J. Nucl. Mater.,2005,336:331-368.
[18] 韦天国,林建康,龙冲生,等. 蒸汽中的溶解氧对锆合金腐蚀行为的影响[J]. 金属学报,2016,52(2):209-216. WEI Tianguo,LIN Jiankang,LONG Chongsheng,et al. Effect of dissolved oxygen in steam on the corrosion behaviors of zirconium alloys[J]. Acta Metallur. Sin.,2016,52(2):209-216.
[19] SUN R R,YAO M Y,et al. The effect of dissolved oxygen on the corrosion behavior of Zr-0.85Sn-0.16Nb-0.37Fr- 0.18Cr alloy in 500℃/10.3 MPa supper-heated stream[C]//Proceedings of the 201725th International Conference on Nuclear Engineering,ICONE25-66486,2017:1-10.
[20] LUNDE L. Special features of external corrosion of fuel cladding in boiling water reactors[J]. Nucl. Eng. Des.,1975; 33:178-195.
[21] MATSUKAWA Y,KITAYAMA S,MURAKAMI K,et al. Reassessment of oxidation-induced amorphization and dissolution of Nb precipitates in Zr-Nb nuclear fuel cladding tubes[J]. Acta Mater.,2017,127:153-146.
[22] TEJLAND P,THUVANDER M,ANDREN H O,et al. Detailed analysis of the microstructure of the metal/oxide interface region in zircaloy-2 after autoclave corrosion testing[M]. Zirconium in the Nuclear Industry:16th International Symposium. 2011:102956.
[23] HU J,GARNER A,NI N,et al. Identifying suboxide grains at the metal-oxide interface of a corroded Zr-1.0%Nb alloy using (S)TEM,transmission-EBSD and EELS[J]. Micron,2015,69:35-42.
[24] YARDLEY S S,MOORE K L,NI N,et al. An investigation of the oxidation behaviour of zirconium alloys using isotopic tracers and high resolution SIMS[J]. J. Nucl. Mater.,2013,443:443-436.
[25] NI N,HUDSON D,WEI J,et al. How the crystallography and nanoscale chemistry of the metal/oxide interface develops during the aqueous oxidation of zirconium cladding alloys[J]. Acta Mater.,2012,60:7132-7149.
[26] GABORY B D,DONG Y,MOTTA A T,et al. EELS and atom probe tomography study of the evolution of the metal/oxide interface during zirconium alloy oxidation[J]. J. Nucl. Mater.,2015,462:304-309.
[27] DONG Y,MOTTA A T,MARQUIS E A. Atom probe tomography study of alloying element distributions in Zr alloys and their oxides[J]. J. Nucl. Mater.,2013,442:270-281.
[28] ZENG Q F,ZHU L B,YUAN G H,et al. Microstructure and properties of new zirconium alloys for CAP1400 fuel assembly[C]//Proceedings of the 25th International Conference on Nuclear Engineering ICONE25-66951,2017:1-5.
[29] 曾奇锋,朱丽兵,袁改焕,等. CAP1400燃料组件用新锆合金研究[J]. 核技术,2017,40:030602. ZENG Qifeng,ZHU Libing,YUAN Gaihuan,et al. Study on new zirconium alloys for CAP1400 fuel assembly[J]. Nucl. Techni.,2017,40:030602.
[30] 程竹青,杨忠波,邱军,等. Zr-Sn-Nb-Fe锆合金耐腐蚀性能研究[J]. 核动力工程,2017,38(5):132-137. CHENG Zhuqing,YANG Zhongbo,QIU Jun et al. Study on corrosion resistance of Zr-Sn-Nb-Fe zirconium alloys[J]. Nucl. Power Eng., 2017,38(5):132-137.
[31] FRANKEL P G,WEI J,FRANCIS E M,et al. Effect of Sn on corrosion mechanisms in advanced Zr-Cladding for pressurised water reactors[J]. International Symposium on Zirconium in the Nuclear Industry,2015:404-438.
[32] GODLEWSKI J,BOUVIER P,LUCAZEAU G,et al. Stress distribution measured by Raman spectroscopy in zirconia films formed by oxidation of Zr-based alloys[J]. Twelfth Int. Symp. Zr Nuclear Ind.,ASTM STP 1354(West Conshohocken,PA:ASTM,2000):877-900.
[33] PREUSS M,FRANKEL P,LOZANO-PEREZ S,et al. Studies regarding corrosion mechanisms in zirconium alloys[J]. J. ASTM Inter.,2011,8(9):1-23.
[34] LY A,AMBARD A,BLAT-YRIEIX M,et al. Understanding crack formation at the metal/oxide interface during corrosion of zircaloy-4 using a simple mechanical model[J]. J. ASTM Inter.,2011,8(9):1-18.
[35] PARK J Y,CHOI B K,YOO S J,et al. Corrosion and oxide properties of HANA alloys[J]. J. ASTM Inter.,2008,5(5):471-485.
[36] LESURF J E,BRYANT P E C. Effect of water chemistry on the oxidation of zirconium alloys under reactor radiation[J]. Global Governance,1968,9(3):301-324.
[37] H STEHLE W K R M. External corrosion of cladding in PWRs[J]. Nucl. Eng. Des.,1975,33:155-168.
[38] PROFF C,ABOLHASSANI S,LEMAIGNAN C. Oxidation behaviour of zirconium alloys and their precipitates-A mechanistic study[J]. J. Nucl. Mater.,2013,432:222-238.
[39] 王荣山,柏广海,翁立奎,等. 含Nb锆合金第二相及其与腐蚀行为关系研究进展. 稀有金属材料与工程,2014,43(12):3188-3191. WANG Rongshan,BAI Guanghai,WENG Likui. et al. Research progress of SPPs and its relation with corrosion properties[J]. Rare Met. Mater. Eng.,2014,43(12):3188-3191.
[40] TEJLAND P,ANDREN H O,SUNDELL G,et al. Oxidation mechanism in zircaloy-2- The effect of SPP size distribution[C]//Zirconium in the Nuclear Industry:17th International Symposium,STP 1543,Robert Comstock and Pierre Barberis,Eds. ASTM International,West Conshohocken,PA 2014,2014:373-389.
[41] 周邦新,赵文金,苗志,等. 改善锆-4合金耐腐蚀性能的研究[J]. 核科学与工程,1995,15(3):242-250. ZHOU Bangxin,ZHAO Wenjin,MIAO Zhi. An investigation on improving corrosion behavior of zircaloy-4[J]. Chinese J. Nuc. Sci. Eng. 1995,15(3):242-250.
[42] 姚美意. 合金成分及热处理对锆合金腐蚀和吸氢行为影响的研究[D]. 上海:上海大学,2007. YAO Meiyi. The effect of alloying composition and heat treatments on the corrosion and hydrogen uptake behaviors of zirconium alloy[D]. Shanghai:Shanghai University,2007.
[43] 沈月锋,姚美意,张欣,等. β相水淬对Zr-4合金在LiOH水溶液中耐腐蚀性能的影响[J]. 金属学报,2011,47(7):899-909. SHEN Yuefeng,YAO Meiyi,ZHANG Xin,et al. Effect of β-quenching on the corrosion resistance of Zr-4 alloy in LiOH aqueous solution[J]. Acta Metallur. Sin.,2011,47(7):899-909. |