Wind Turbine Load Prediction Method Combining Fiber Bragg Grating Sensor Data and Gated Recurrent Units Neural Network
XIAO Zhao1, CAO Zhihui2, DENG Jiewen1, DUAN Shuyong3, ZHAO Qiancheng1, DAI Juchuan1, TAO Jie2
1. School of Mechanical and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411201; 2. School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201; 3. State Key Laboratory of Intelligent Power Distribution Equipment and System, Hebei University of Technology, Tianjin 300401
XIAO Zhao, CAO Zhihui, DENG Jiewen, DUAN Shuyong, ZHAO Qiancheng, DAI Juchuan, TAO Jie. Wind Turbine Load Prediction Method Combining Fiber Bragg Grating Sensor Data and Gated Recurrent Units Neural Network[J]. Journal of Mechanical Engineering, 2025, 61(8): 272-282.
[1] BOŠNJAKOVIĆ M, KATINIĆ M, SANTA R,et al. Wind turbine technology trends[J]. Applied Sciences,2022,12(17):8653. [2] REN Zhengru,VERMA A S,LI Ye,et al. Offshore wind turbine operations and maintenance:A state-of-the-art review[J]. Renewable and Sustainable Energy Reviews,2021,144:110886. [3] LIAO Ding,ZHU Shunpeng,CORREIA J,et al. Fatigue reliability of wind turbines:Historical perspectives,recent developments and future prospects[J]. Renewable Energy,2022,200:724-742. [4] 秦斌,易怀洋,王欣. 基于极限学习机的风电机组叶根载荷辨识建模[J]. 振动与冲击,2018,37(4):257-262. QIN Bin,YI Huaiyang,WANG Xin. Identification and modeling of wind turbine blade root load based on extreme learning machine[J]. Vibration and Impact,2018,37(4):257-262. [5] 王思清,滕伟,王罗,等. 水平轴风电机组叶片摆振与挥舞机理建模[J]. 机械工程学报,2024,60(3):131-142. WANG Siqing,TENG Wei,WANG Luo,et al. Modeling of blade oscillation and flapping mechanism in horizontal axis wind turbines[J]. Journal of Mechanical Engineering,2024,60(3):131-142. [6] WANG Zedong,LU Ziqi,YI Wenwu,et al. A study of nonlinear aeroelastic response of a long flexible blade for the horizontal axis wind turbine[J]. Ocean Engineering,2023,279:113660. [7] CHEN Chaohe,MA Yuan,FAN Tianhui. Review of model experimental methods focusing on aerodynamic simulation of floating offshore wind turbines[J]. Renewable and Sustainable Energy Reviews,2022,157:112036. [8] AMIRI M M,SHADMAN M,ESTEFEN S F. A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes[J]. Renewable and Sustainable Energy Reviews,2024,193:114279. [9] 李密密,戴巨川,陈换过,等. 基于光纤传感的风电机组叶片应变传递特性研究[J]. 太阳能学报,2022,43(7):375-384. LI Mimi,DAI Juchuan,CHEN Huanguo,et al. Research on strain transfer characteristics of wind turbine blades based on fiber optic sensing [J]. Journal of Solar Energy,2022,43(7):375-384. [10] GUTIERREZ S U,FERNÁNDEZ S A,POLINDER H,et al. Input torque measurements for wind turbine gearboxes using fiber-optic strain sensors[J]. Wind Energy Science,2022,7(2):505-521. [11] 王超,戴巨川,杨鑫,等. 基于“应变-载荷”模型的大型风电机组叶片载荷识别研究[J]. 太阳能学报,2019,40(5):1423-1432. WANG Chao,DAI Juchuan,YANG Xin,et al. Research on load identification of large wind turbine blades based on the “strain load” model[J]. Journal of Solar Energy,2019,40(5):1423-1432. [12] ZHU Fan,ZHANG Meng,MA Fuxuan,et al. Identification of wind load exerted on the jacket wind turbines from optimally placed strain gauges using C-optimal design and mathematical model reduction[J]. Journal of Marine Science and Engineering,2024,12(4):563. [13] WEN Binrong,TIAN Xinliang,JIANG Zhihao,et al. Monitoring blade loads for a floating wind turbine in wave basin model tests using fiber bragg grating sensors:A feasibility study[J]. Marine Structures,2020,71:102729. [14] KAEWNIAM P,CAO M,ALKAYEM N F,et al. Recent advances in damage detection of wind turbine blades:A state-of-the-art review[J]. Renewable and Sustainable Energy Reviews,2022,167:112723. [15] 李新华,梁浩,徐伟弘,等. 常用分布式光纤传感器性能比较[J]. 光通信技术,2007(5):14-18. LI Xinhua,LIANG Hao,XU Weihong,et al. Performance comparison of commonly used distributed fiber optic sensors[J]. Optical Communication Technology,2007(5):14-18. [16] DAI Wei,LI Dongsheng,JIANG Tao,et al. Load identification of a 2.5 MW wind turbine tower using Kalman filtering techniques and BDS data[J]. Engineering Structures,2023,281:115763. [17] NOPPE N,WEIJTJENS W,DEVRIENDT C. Modeling of quasi-static thrust load of wind turbines based on 1 s SCADA data[J]. Wind Energy Science,2018,3(1):139-147. [18] 周士栋,薛扬,马晓晶,等. 基于SCADA数据的风电机组关键载荷预测[J]. 农业工程学报,2018,34(2):219-225. ZHOU Shidong,XUE Yang,MA Xiaojing,et al. Wind turbine critical load prediction based on SCADA data[J] Journal of Agricultural Engineering,2018,34(2):219-225. [19] 牟哲岳,孙勇,王瑞良,等. 基于实测数据和机器学习的风电机组载荷预测模型[J]. 太阳能学报,2023,44(10):414-419. MOU Zheyue,SUN Yong,WANG Ruiliang,et al. Wind turbine load prediction model based on measured data and machine learning[J]. Journal of Solar Energy,2023,44(10):414-419. [20] DAI Juchuan,LI Mimi,CHEN Huanguo,et al. Progress and challenges on blade load research of large-scale wind turbines[J]. Renewable Energy,2022,196:482-496. [21] SHEWALKAR A,NYAVANANDI D,LUDWIG S A. Performance evaluation of deep neural networks applied to speech recognition:RNN,LSTM and GRU[J]. Journal of Artificial Intelligence and Soft Computing Research,2019,9(4):235-245. [22] YAMAK P T,YUJIAN L,GADOSEY P K. A comparison between ARIMA,LSTM,and GRU for time series forecasting[C]//Proceedings of the 20192nd International Conference on Algorithms,Computing and Artificial Intelligence. 2019:49-55. [23] LIASHCHYNSKYI P. Grid search,random search,genetic algorithm:A big comparison for NAS[J]. arXiv Preprint arXiv,2019:1912.06059. [24] POPESCU M C,BALAS V E,PERESCU-POPESCU L,et al. Multilayer perceptron and neural networks[J]. WSEAS Transactions on Circuits and Systems,2009,8(7):579-588. [25] YU Yong,SI Xiaosheng,HU Changhua ,et al. A review of recurrent neural networks:LSTM cells and network architectures[J]. Neural Computation,2019,31(7):1235-1270. [26] SHERSTINSKY A. Fundamentals of recurrent neural network and long short-term memory network[J]. Physica D:Nonlinear Phenomena,2020,404:132306.