[1] 雷亚国, 贾峰, 孔德同, 等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报, 2018, 54(5): 94-104. LEI Yaguo, JIA Feng, KONG Detong, et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering, 2018, 54(5): 94-104. [2] 邵海东, 肖一鸣, 颜深, 等. 仿真数据驱动的改进无监督域适应轴承故障诊断[J]. 机械工程学报, 2023, 59(3): 76-85. SHAO Haidong, XIAO Yiming, YAN Shen, et al. Simulation data-driven enhanced unsupervised domain adaptation for bearing fault diagnosis[J]. Journal of Mechanical Engineering, 2022, 59(3): 76-85. [3] 邵海东, 肖一鸣, 闵志闪, 等. 区块链和边缘计算赋能的联邦学习故障诊断框架[J]. 机械工程学报, 2023, 59(21): 283-292. SHAO Haidong, XIAO Yiming, MIN Zhishan, et al. Blockchain and edge computing enabled federated learning fault diagnosis framework[J]. Journal of Mechanical Engineering, 2023, 59(21): 283-292. [4] ZHOU T, HAN T, DROGUETTCD E. Towards trustworthy machine fault diagnosis: A probabilistic Bayesian deep learning framework[J]. Reliability Engineering and System Safety, 2022, 224: 108525. [5] 邵海东, 肖一鸣, 邓乾旺, 等. 基于不确定性感知网络的可信机械故障诊断[J]. 机械工程学报, 2024, 60(12): 194-206. SHAO Haidong, XIAO Yiming, DENG Qianwang, et al. Trustworthy mechanical fault diagnosis using uncertainty-aware network[J]. Journal of Mechanical Engineering, 2024, 60(12): 194-206. [6] JIANG T, SUN Z, FU S, et al. Human-AI interaction research agenda: A user-centered perspective[J]. Data and Information Management. 2024, 8(4): 100078. [7] REN M, CHEN N, QIU H, et al. Human-machine collaborative decision-making: An evolutionary roadmap based on cognitive intelligence[J]. International Journal of Social Robotics, 2023, 15(7): 1101-1114. [8] GUO C, PLEISS G, SUN Y, et al. On calibration of modern neural networks[C]. International Conference on Machine Learning, Sydney, 2017. [9] OVADIA Y, FERTIG E, REN J, et al. Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift[C]. Neural Information Processing Systems, Vancouver, 2019. [10] MUKHOTI J, KULHARIA V, SANYAL A, et al. Calibrating deep neural networks using focal loss[C]. Neural Information Processing Systems, 2020. [11] PEREYRA G, TUCKER G, CHOROWSKI J, et al. Regularizing neural networks by penalizing confident output distributions[J]. arXiv: 1701.06548, 2017. [12] NOH J, PARK H, LEE J, et al. RankMixup: Ranking-based Mixup training for network calibration[C]. IEEE/CVF International Conference on Computer Vision, Paris, 2023, pp. 1358-1368. [13] MULLER R, KORNBLITH S, HINTON G. When does label smoothing help[C]. Neural Information Processing Systems, Vancouver, 2019. [14] ZHANG Z, DALCA A, SABUNCU M. Confidence calibration for convolutional neural networks using structured dropout[J]. arXiv: 1906.09551, 2019. [15] LAKSHMINARAYANAN B, PRITZEL A, BLUNDELL C. Simple and scalable predictive uncertainty estimation using deep ensembles[C]. Neural Information Processing Systems, Long Beach, 2017. [16] ZHAO M, ZHONG S, FU X, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4681-4690. [17] WEI H, XIE R, CHENG H, et al. Mitigating neural network overconfidence with logit normalization[C]. International Conference on Machine Learning, Baltimore, 2022. [18] HAN T, LIU C, WU L, et al. An adaptive spatiotemporal feature learning approach for fault diagnosis in complex systems[J]. Mechanical Systems and Signal Processing, 2019, 117: 170-187. [19] ZHAO Z, LI T, WU J, et al. Deep learning algorithms for rotating machinery intelligent diagnosis: An open source benchmark study[J]. ISA Transactions, 2020, 107: 224-255. [20] WANG D, FENG L, ZHANG M. Rethinking calibration of deep neural networks: Do not be afraid of overconfidence[C]. Neural Information Processing Systems, 2021. |