[1] 刘艳菊,王秋霁,赵开峰,等.基于卷积神经网络的热轧钢条表面实时缺陷检测[J].仪器仪表学报, 2021, 42(12):211-219. LIU Yanju, WANG Qiuqi, ZHAO Kaifeng, et al. Real-time defect detection of hot rolling steel bar based on convolution neural network[J]. Chinese Journal of Scientific Instrument, 2021, 42(12):211-219. [2] 张聿远,张立民,闫文君.基于深度多级残差网络的低信噪比下空频分组码识别方法[J].电子学报, 2022, 50(1):79-88. ZHANG Yuyuan, ZHANG Limin, YAN Wenjun. A space-frequency block code recognition based on deep multilevel residual network with low SNR[J]. Acta Electronica Sinica, 2022, 50(1):79-88. [3] SPEISER J L, MILLER M E, TOOZE J, et al. A comparison of random forest variable selection methods for classification prediction modeling[J]. Expert Systems with Applications, 2019, 134:93-101. [4] 石欣,范智瑞,张杰毅,等.基于LMS-随机森林的肌电信号下肢动作快速分类[J].仪器仪表学报, 2020, 41(6):218-224. SHI Xin, FAN Zhirui, ZHANG Jieyi, et al. Rapid classification of lower limb movements of EMG signals based on LMS-random forest[J]. Chinese Journal of Scientific Instrument, 2020, 41(6):218-224. [5] 李强,张宇献.基于量子进化在线序贯极限学习机的变桨系统故障检测[J].太阳能学报, 2022, 43(1):44-51. LI Qiang, ZHANG Yuxian. Fault detection based on online sequential extreme learning machine using quantum evolutionary algorithm for pitch system[J]. Acta Energiae Solaris Sinica, 2022, 43(1):44-51. [6] ZHOU Jian, QIU Yingui, ZHU Shuangli, et al. Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate[J]. Engineering Applications of Artificial Intelligence, 2021, 97:104015. [7] 钱忠胜,俞情媛,宋涛,等.基于支持向量机回归模型的测试用例生成与重用[J].电子学报, 2021, 49(7):1386-1391. QIAN Zhongsheng, YU Qingyuan, SONG Tao, et al. Test case generation and reuse based on support vector machine regression model[J]. Acta Electronica Sinica, 2021, 49(7):1386-1391. [8] 付乐天,李鹏,高莲.考虑样本异常值的改进最小二乘支持向量机算法[J].仪器仪表学报, 2021, 42(6):179-190. FU Letian, LI Peng, GAO Lian. Improved LSSVM algorithm considering sample outliers[J]. Chinese Journal of Scientific Instrument, 2021, 42(06):179-190. [9] LI G, YANG L, WU Z, et al. DC programming for sparse proximal support vector machines[J]. Information Sciences, 2021, 547:187-201. [10] RICHHARIVA B, TANVEER M. A reduced universum twin support vector machine for class imbalance learning[J]. Pattern Recognition, 2020, 102:107150. [11] LUO Luo, XIE Yubo, ZHANG Zhihua, et al. Support matrix machines[C]//International Conference on Machine Learning. PMLR, 2015:938-947. [12] LI Chunna, SHAO Yuanhai, YIN Wotao, et al. Robust and sparse linear discriminant analysis via an alternating direction method of multipliers[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(3):915-926. [13] ZHENG Qingqing, ZHU Fengyuan, HENG P A. Robust support matrix machine for single trial EEG classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26(3):551-562. [14] ZHENG Qingqing, ZHU Fengyuan, QIN Jing, et al. Sparse support matrix machine[J]. Pattern Recognition, 2018, 76:715-726. [15] 徐海锋,潘海洋,郑近德,等.交互偏移支持矩阵机及其在滚动轴承故障诊断中的应用[J].振动工程学报, 2022, 35(3):760-770. XU Haifeng, PAN Haiyang, ZHENG Jinde, et al. Interactive deviation support matrix machine and its application in rolling bearing fault diagnosis[J]. Journal of Vibration Engineering, 2022, 35(3):760-770. [16] PAN Haiyang, XU Haifeng, ZHENG Jinde, et al. Multi-class fuzzy support matrix machine for classification in roller bearing fault diagnosis[J]. Advanced Engineering Informatics, 2022, 51:101445. [17] PAN Haiyang, XU Haifeng, ZHENG Jinde. A novel symplectic relevance matrix machine method for intelligent fault diagnosis of roller bearing[J]. Expert Systems with Applications, 2022, 192:116400. [18] 伍毅,盛丽,潘海洋,等.基于迁移最小二乘支持矩阵机的滚动轴承故障诊断方法[J].振动与冲击, 2022, 41(21):53-59. WU Yi, SHENG Li, PAN Haiyang, et al. Fault diagnosis method of rolling bearing based on transfer least squares support matrix machine[J]. Journal of Vibration and Shock, 2022, 41(21):53-59. |