[1] SI Yifan,YU Chunlong,DONG Zhichao,et al. Wetting and spreading:Fundamental theories to cutting-edge applications[J]. Current Opinion in Colloid & Interface Science,2017,36(1):10-19. [2] 李小磊,张磊,马晓雯,等. 基于微肋板伸缩疏水/超疏水表面设计及其润湿性调控[J]. 机械工程学报,2017,53(5):167-174. LI Xiaolei,ZHANG Lei,MA Xiaowen,et al. Design and wettability control of hydrophobic/superhydrophobic surfaces based on the extendable micro-rib[J]. Journal of Mechanical Engineering,2017,53(5):167-174. [3] 顾秦铭,张朝阳,周晖,等. 激光-电化学沉积制备超疏水铜表面及其Cassie状态稳定性研究[J]. 机械工程学报,2020,56(1):223-232. GU Qinming,ZHANG Zhaoyang,ZHOU Hui,et al. An investigation into preparation and Cassie state stability analysis of superhydrophobic copper surface produced by laser ablation and electrodeposition[J]. Journal of Mechanical Engineering,2020,56(1):223-232. [4] MEDINA S,CAMILA F,VALENCIA D,et al. Separation of asphaltene-stabilized water in oil emulsions and immiscible oil/water mixtures using a hydrophobic cellulosic membrane[J]. Fuel,2018,231:297-306. [5] ZHANG Dongguang,LI Linghan,WU Yali,et al. One-step method for fabrication of bioinspired hierarchical superhydrophobic surface with robust stability[J]. Applied Surface Science,2019,473(15):493-499. [6] BELAL AS,KHALIL MMA,SOLIMAN M,et al. Novel superhydrophobic surface of cotton fabrics for removing oil or organic solvents from contaminated water[J]. Cellulose,2020,27(13):1-17. [7] KARIM A,MAHESH K. Wall-bounded flow over a realistically rough superhydrophobic surface[J]. Journal of Fluid Mechanics,2019,873:977-1019. [8] ZHANG Zhefeng,HUANG Xiaodong,WEN Liping. Inspired by self-cleaning effect of lotus leaf:Surface modification and antifouling performance with surgical clothing[J]. Chinese Journal of Applied Chemistry,2019,36(1):34-40. [9] RIUS-AYRA O,CASTELLOTE-ALVAREZ R,ESCOBAR A M,et al. Superhydrophobic coating bioinspired on rice leaf:A first attempt to enhance erosion resistance properties at environmental conditions with ceramic particles[J]. Materials Science Forum,2018,941:1874-1879. [10] YANG Yushan,SHEN Huajie,QIU Jian. Fabrication of biomimetic robust self-cleaning superhydrophobic wood with canna-leaf-like micro/nanostructure through morph-genetic method improved water-,UV-,and corrosion resistance properties[J]. Journal of Molecular Structure,2020,1219:128616. [11] FANG Yan,SUN Gang,WANG Tongqing,et al. Hydrophobicity mechanism of non-smooth pattern on surface of butterfly wing[J]. Chinese Science Bulletin,2007,52(5):711-716. [12] SCHOLZ I,BUCKINS M,DOLGE L,et al. Slippery surfaces of pitcher plants:Nepenthes wax crystals minimize insect attachment via microscopic surface roughness[J]. Journal of Experimental Biology,2010,213(7):1115-1125. [13] 王玉娟,宋小闯,陈云飞. 猪笼草捕虫笼超滑表面黏附特性测量和抗黏稳定性分析[J]. 东南大学学报,2017,47(2):259-264. WANG Yujuan,SONG Xiaochuang,CHEN Yunfei. Measurement of adhesion properties and analysis of anti-adhension stability on super-slippery surfaces of Nepenthes pitchers[J]. Journal of Southeast University (Natural Science Edition),2017,47(2):259-264. [14] CHEN Huawei,ZHANG Pengfei,JIANG Lei,et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature,2016,532(7597):85-89. [15] CHEN Huawei,ZHANG Liwen,ZHANG Pengfei,et al. A novel bioinspired continuous unidirectional liquid spreading surface structure from the peristome surface of Nepenthes alata.[J] Small,2017,13(4):1670-1676. [16] 王立新,黄风山,周强. 致灾农业昆虫捕集滑板表面结构仿生构建与性能验证[J]. 农业工程学报,2015,31(20):34-40. WANG Lixin,HUANG Fengshan,ZHOU Qiang. Surface structure biomimetic design and performance testing of slippery trapping plate used for controlling agricultural insect[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(20):34-40. [17] WANG Lixin,DONG shiyun,ZHOU Qiang. Slippery surface of Nepenthes alata pitcher:the role of lunate cell and wax crystal in restricting attachment ability of ant Camponotus japonicus Mayr[J]. The Journal of Bionic Engineering,2016,13(3):373-387. [18] WANG Lixin,TAO Dashuai,DONG Shiyun, et al. Contributions of lunate cells and wax crystals to the surface anisotropy of Nepenthes slippery zone[J]. Royal Society Open Science,2018,5(9):180766. [19] GORB E,HASS K,HENRICH A,et al. Composite structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant Nepenthes alata and its effect on insect attachment[J]. Journal of Experimental Biology,2005,208(24):4651-4662. [20] GORB E,GORB S. Physicochemical properties of functional surfaces in pitchers of the carnivorous plant Nepenthes alata blanco (Nepenthaceae)[J]. Plant Biology,2006,8(6):841-848. [21] ZHANG Pengfei,CHEN Huawei,ZHANG Deyuan. Investigation of the anisotropic morphology-induced effects of the slippery zone in pitchers of Nepenthes alata[J]. Journal of Bionic Engineering,2015,12(1):79-87. [22] 张鹏飞,张德远,陈华伟. 猪笼草内表面微观结构及其浸润性研究[J]. 农业机械学报,2014,45(1):341-345. ZHANG Pengfei,ZHANG Deyuan,CHEN Huawei. Microstructure and wettability character of Nepenthes' pitcher surfaces[J]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(1):341-345. [23] WANG Lixin,ZHOU Qiang. Surface hydrophobicity of slippery zones in the pitchers of two Nepenthes species and a hybrid[J]. Scientific Reports,2016,6(1):19907. [24] WANG Lixin,ZHANG Shuoyan,LI Shanshan,et al. Inner surface of Nepenthes slippery zone:ratchet effect of lunate cells causes anisotropic superhydrophobicity[J]. Royal Society Open Science,2020,7(3):200066. [25] PARK J Y,HA M Y,CHOI H J,et al. A study on the contact angles of a water droplet on smooth and rough solid surfaces[J]. Journal of Mechanical Science and Technology,2011,25(2):323-332. [26] GUO Lin,TANG Guihua,KUMAR S. Droplet morphology and mobility on lubricant-impregnated surfaces:a molecular dynamics study[J]. Langmuir,2019,35(49):16377-16387. [27] 张凯,陆勇俊,王峰会. 表面能梯度驱动下纳米水滴在不同微结构表面上的运动[J]. 物理学报,2015,64(6):268-273. ZHANG Kai,LU Yongjun,WANG Fenghui. Motion of the nanodroplets driven by energy gradient on surfaces with different microstructures[J]. Acta Physical Sinica,2015,64(6):268-273. [28] ELZAABALAWY A,MEGUID S A. Effect of surface topology on the wettability of superhydrophobic surfaces[J]. Journal of Dispersion Science and Technology,2019,41(3):1-9. [29] 吕瑞超,刘红,高久良,等. 醇水混合冷却剂表面张力和接触角的测定[J]. 工程热物理学报,2020,41(3):191-196. LÜ Ruichao,LIU Hong,GAO Jiuliang,et al. Measurement of surface tension and contact angle of alcohol-water mixed coolant[J]. Journal of Engineering Thermophysics,2020,41(3):191-196. [30] 方瑶,雍佳乐,霍静岚,等. 飞秒激光仿生制备超滑表面及其应用[J]. 激光与光电子学进展,2020,57(11):1-19. FANG Yao,YONG Jiale,HUO Jinglan,et al. Bioinspired slippery surface fabricated by femtosecond laser and its applications[J]. Laser & Optoelectronics Progress,2020,57(11):1-19. |