Journal of Mechanical Engineering ›› 2022, Vol. 58 ›› Issue (16): 2-20.doi: 10.3901/JME.2022.16.002
Previous Articles Next Articles
ZHAN Mei1,2, DONG Yunda1,2, ZHAI Zhuolei1,2, FAN Xiaoguang2, SHI Zhipeng1,2, AN Qiang1,2
Received:
2021-11-30
Revised:
2022-04-10
Online:
2022-08-20
Published:
2022-11-03
CLC Number:
ZHAN Mei, DONG Yunda, ZHAI Zhuolei, FAN Xiaoguang, SHI Zhipeng, AN Qiang. Review on Fast Numerical Simulation Method for Plastic Forming[J]. Journal of Mechanical Engineering, 2022, 58(16): 2-20.
[1] YANG He, ZHAN Mei, LI Tian, et al. Advances in spinning of aluminum alloy large-sized complicated thin-walled shells[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10): 2534-2550. 杨合, 詹梅, 李甜, 等. 铝合金大型复杂薄壁壳体旋压研究进展[J]. 中国有色金属学, 2011, 21(10): 2534-2550. [2] CHINA Society for Technology of Plasticity, CMES. The plasticity forming technology roadmap[M]. Beijing: Science and Technology of China Press, 2016. 中国机械工程学会塑性工程分会. 塑性成形技术路线图[M]. 北京: 中国科学技术出版社, 2016. [3] ZHANG Haidong, DENG Lei, WANG Xinyun, et al. Research progress on mechanism and application of vibration assisted plastic forming[J]. Aeronautical Manufacturing Technology, 2020, 63(16): 22-31. 张海栋, 邓磊, 王新云, 等. 振动辅助塑性成形机理及应用研究进展[J]. 航空制造技术, 2020, 63(16): 22-31. [4] DING Junhao, LI Heng, BIAN Tianjun, et al. Electroplasticity and electrically-assisted forming: A critical review[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 20-37. 丁俊豪, 李恒, 边天军, 等. 电塑性及电流辅助成形研究动态及展望[J]. 航空学报, 2018, 39(1): 20-37. [5] CAI Sheng, LIU Xinmei, CHEN Jun. Research progress on numerical simulation of incremental sheet forming[J]. Journal of Plasticity Engineering, 2020, 27(4): 1-12. 蔡圣, 刘欣梅, 陈军. 薄板渐进成形数值仿真研究进展[J]. 塑性工程学报, 2020, 27(4): 1-12. [6] LIU Xiaojing, TANG Xianlin, LI Guan, et al. Numerical simulation of forming process for aluminum alloy cylindrical parts with large ratio of height-diameter[J]. Special-cast and Non-ferrous Alloys, 2016, 36(8): 796-799. 刘晓晶, 唐先林, 李官, 等. 大高径比铝镁合金筒形件成形工艺的数值模拟[J]. 特种铸造及有色合金, 2016, 36(8): 796-799. [7] LIU Qian, LIU Jing, ZHANG Yongjun, et al. Numerical simulation and deformation mechanism of flexible-die blanking[J]. Journal of Plasticity Engineering, 2016, 23(1): 40-45. 刘倩, 刘靖, 张永军, 等. 软模冲裁工艺数值模拟及变形机理[J]. 塑性工程学报, 2016, 23(1): 40-45. [8] QIN Q, MASUKU E S, BRAMLEY A N. Incremental sheet-metal forming simulation and accuracy[C]// Proceedings of 8th ICTP. Verona, 2005. [9] ZHANG Jinyu, YU Dalian, LIU Shaoqing, et al. Simulation of temperature field of train axle-mounted disk braking based on rotating heat flux method and uniformly distributed heat flux method[J]. Journal of Mechanical Engineering, 2020, 56(8): 172-181. 张金煜, 虞大联, 刘韶庆, 等. 基于旋转热流法和均布热流法的列车轴盘制动温度场仿真分析[J]. 机械工程学报, 2020, 56(8): 172-181. [10] KARDANI M, NAZEM M, ABBO A J, et al. Refined h-adaptive finite element procedure for large deformation geotechnical problems[J]. Computational Mechanics, 2012, 49(1): 21-33. [11] ZHANG Xiong, WANG Tianshu, LIU Yan. Computational dynamics[M]. Beijing: Tsinghua University Press, 2015. 张雄, 王天舒, 刘岩. 计算动力学[M]. 北京: 清华大学出版社, 2015. [12] KHOEI A R, ANAHID M, SHAHIM K, et al. Arbitrary Lagrangian–Eulerian method in plasticity of pressure-sensitive material: application to powder forming processes[J]. Computational Mechanics, 2008, 42: 13-38. [13] CRUTZEN Y, BOMAN R, PAPELEUX L, et al. Lagrangian and arbitrary Lagrangian Eulerian simulations of complex roll-forming processes[J]. Comptes Rendus Mécanique, 2016, 334(4-5): 251-266. [14] CRUTZEN Y, BOMAN R, PAPELEUX L, et al. Continuous roll forming including in-line welding and post-cut within an ALE formalism[J]. Finite Elements in Analysis & Design, 2018, 143: 11-31. [15] BOMAN R, PONTHOT. Efficient ALE mesh management for 3D quasi-Eulerian problems[J]. International Journal for Numerical Method in Engineering, 2012, 92(10): 857-890. [16] PITZ I, OTTO A, SCHMIDT M. Simulation of the laser beam forming process with Moving Meshes for large aluminium plates[J]. Physics Procedia, 2010, 5: 363-369. [17] FEULVARCH E, ROUX J C, BERGHEAU J M. A simple and robust moving mesh technique for the finite element simulation of friction stir welding[J]. Journal of Computational and Applied Mathematics, 2013, 246: 269-277. [18] SI H. Adaptive tetrahedral mesh generation by constrained Delaunay refinement[J]. International Journal for Numerical Methods in Engineering, 2008, 75: 856-880. [19] SHAN Julin, GUAN Zhenqun, SONG Chao. A reliable and effective tetrahedral meshing algorithm[J]. Chinese Journal of Computers, 2007, 30(11): 1989-1997. 单菊林, 关振群, 宋超. 一个高效可靠的三维AFT四面体网格生成算法[J]. 计算机学报, 2007, 30(11): 1989-1997. [20] PANG Shengyong, CHEN Tao, CHEN Liliang, et al. Hybrid adaptive tetrahedral mesh generation method for finite element analysis of welding process[J]. Journal of Huazhong University of Science and Technology, 2010, 38(5): 93-96. 庞盛永, 陈涛, 陈立亮, 等. 焊接有限元自适应四面体网格生成方法[J]. 华中科技大学学报, 2010, 38(5): 93-96. [21] WHITE D R, TAUTGES T J. Automatic scheme selection for toolkit hex meshing[J]. International Journal for Numerical Methods in Engineering, 2000, 49: 127-144. [22] GREGSON J, SHEFFER A, ZHANG E. All-hex mesh generation via volumetric PolyCube deformation[J] Computer Graphics Forum, 2011, 30(5): 1407-1416. [23] OWEN S J, SAIGAL S. H-Morph: An indirect approach to advancing front hex meshing[J]. International Journal for Numerical Methods in Engineering, 2000, 49: 289-312. [24] ITO Y, SHIH A M, SONI B K. Octree-based reasonable-quality hexahedral mesh generation using a new set of refinement templates[J]. International Journal for Numerical Methods in Engineering, 2010, 77(13): 1809-1833. [25] HUANG L, ZHAO G, WANG Z, et al. Adaptive hexahedral mesh generation and regeneration using an improved grid-based method[J]. Advances in Engineering Software, 2016, 102: 49-70. [26] LIU Tiantian, ZHENG Peng, LENG Juelin, et al. Local tetrahedra mesh remeshing for adaptive computation[J]. Journal of Jilin University (Science Edition), 2021, 59(6): 1461-1468. 刘田田, 郑澎, 冷珏琳, 等. 面向自适应计算的局部四面体网格重划分[J]. 吉林大学学报(理学版), 2021, 59(6): 1461-1468. [27] BOUSSETTA R, COUPEZ T, FOURMENT L. Adaptive remeshing based on a posteriori error estimation for forging simulation[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195: 6626-6645. [28] TACK L H, SCHNEIDERS R, DEBYE J, et al. Two- and three-dimensional remeshing, mesh refinement and application to simulation of micromechanical processes[J]. Computational Materials Science, 1994, 3(2): 241-246. [29] SCHNEIDERS R, SCHINDLER R, WEILER F. Octree-based generation of hexahedral element meshes[C/CD]//Proceedings of the 5th International Meshing Roundtable. Sandia National Laboratories, 1999. [30] ZHANG H, ZHAO G. Adaptive hexahedral mesh generation based on local domain curvature and thickness using a modified grid-based method[J]. Finite Elements in Analysis and Design, 2007, 43(9): 691-704. [31] HUANG L, ZHAO G, MA X, et al. Incorporating improved refinement techniques for a grid-based geometrically-adaptive hexahedral mesh generation algorithm[J]. Advances in Engineering Software, 2013, 64: 20-32. [32] OWEN S J, SHIH R M, ERNST C D. A template-based approach for parallel hexahedral two-refinement[J]. Computer Aided Design, 2017, 85: 34-52. [33] LIVESU M, MUNTONI A, PUPPO E, et al. Skeleton-driven adaptive hexahedral meshing of tubular shapes[J]. Computer Graphics Forum, 2016, 35(7): 237-246. [34] MIRANDA A C O, MARTHA L F. Hierarchical template-based hexahedral mesh generation[J]. Engineering with Computers, 2018, 34(3): 465-474. [35] STATEN M L, JONES N L. Local refinement of three-dimensional finite element meshes[J]. Engineering with Computers, 1997, 13(3): 165-174. [36] LOBOS C, GONZALEZ E. Mixed-element Octree: a meshing technique toward fast and real-time simulations in biomedical applications[J]. International Journal for Numerical Methods in Biomedical Engineering, 2015, 31(12): e02725. [37] HU Z H, PILLINGER I, HARTLEY P, et al. Three-dimensional finite-element modelling of ring rolling[J]. Journal of Materials Processing Technology, 1994, 45(1-4): 143-148. [38] KIM B S, MOON H K, KIM E Z, et al. A dual-mesh approach to ring-rolling simulations with emphasis on remeshing[J]. Journal of Manufacturing Processes, 2013, 15(4): 635-643. [39] KIM N, MACHIDA S, KOBAYASHI S. Ring rolling process simulation by the three dimensional finite element method[J]. International Journal of Machine Tools & Manufacture, 1990, 30(4): 569-577. [40] HIRT G, KOPP R, HOFMANN O, et al. Implementing a high accuracy multi-mesh method for incremental bulk metal forming[J]. CIRP Annals-Manufacturing Technology, 2007, 56(1): 313-316. [41] BAMBACH M, BARTON G, FRANZKE M, et al. Modelling of incremental bulk and sheet metal forming[J]. Steel Research International, 2007, 78(10-11): 751-755. [42] BAMBACH M. Fast simulation of incremental sheet metal forming by adaptive remeshing and subcycling[J]. International Journal of Material Forming, 2016, 9(3): 353-360. [43] RAMADAN M, FOURMENT L, DIGONNET H. A parallel two mesh method for speeding-up processes with localized deformations: Application to cogging[J]. International Journal of Material Forming, 2009, 2: 581-584. [44] DUCLOUX R, PERCHAT E. Dual mesh applied to several incremental forming examples[C]//11th International Conference on Numerical Methods in Industrial Forming Process. American Institute of Physics, 2013. [45] MICHELI P D, PERCHAT E, DUCLOUX R, et al. Dramatic speed-up in FEM simulations of various incremental forming processes thanks to multi-mesh implementation in forge[J]. Key Engineering Materials, 2013, 554-557: 2499-2506. [46] AHMAD S, IRONS B M, ZIENKIEWICS O C. Analysis of thick and thin shell structures by curved finite elements[J]. International Journal of Numerical Methods in Engineering, 1970, 2: 419-451. [47] WU S R, GU L. Introduction to the explicit finite element method for nonlinear transient dynamics[M]. Hoboken: John Wiley & Sons, Inc, 2012. [48] TANG Bingtao, ZHAO Zhen, CHEN Jun, et al. DKT flat shell elements and their implementations in one step FEM in sheet metal forming[J]. Journal of Shanghai Jiaotong University, 2006, 40(10): 1641-1644. 唐炳涛, 赵震, 陈军, 等. DKT板壳单元及其在板料成形一步模拟法中的实现[J]. 上海交通大学学报, 2006, 40(10): 1641-1644. [49] SONG Yunhe, QIN Xuejiao, BAO Yidong. Simulation of gravity loading deformation in sheet metal stamping based on DKT12 shell element[J]. Journal of Plasticity Engineering, 2020, 27 (11): 65-69. 宋云鹤, 秦雪娇, 鲍益东. 基于DKT12壳单元的板料冲压成形中重力加载变形模拟仿真[J]. 塑性工程学报, 2020, 27(11): 65-69. [50] GUO Y Q, GATI W, NACEUR H, et al. An efficient DKT rotation free shell element for springback simulation in sheet metal forming[J]. Computers & Structures, 2002, 80: 2299-2312. [51] SABOURIN F, CARBONNIERE J, BRUNET M. A new quadrilateral shell element using 16 degrees of freedom[J]. Engineering Computations, 2009, 26(50): 500-540. [52] KATILI I. A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-part Ⅰ: An extended DKT element for thick-plate bending analysis[J]. International Journal for Numerical Methods in Engineering, 1993, 36: 1859-1883. [53] KATILI I. A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-part Ⅱ: An extended DKQ element for thick-plate bending analysis[J]. International Journal for Numerical Methods in Engineering, 1993, 36: 1885-1908. [54] KATILI I, BATOZ J L, MAKNUN I J, et al. The development of DKMQ plate bending element for thick to thin shell analysis based on the Naghdi/Reissner/Mindlin shell theory[J]. Finite Elements in Analysis & Design, 2015, 100: 12-27. [55] ZAREH M, QIAN X. Kirchhoff–Love shell formulation based on triangular isogeometric analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 347: 853-873. [56] AMBATI M, KIENDL J, LORENZIS L D. Isogeometric Kirchhoff-Love shell formulation for elasto-plasticity[J]. Computer Methods in Applied Mechanics & Engineering, 2018, 340: 320-339. [57] BATHE K J, DVORKIN E N. A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation[J]. International Journal for Numerical Methods in Engineering, 1985, 21: 367-383. [58] BATHE K J, DVORKIN E N. A formulation of general shell elements—the use of mixed interpolation of tensorial components[J]. International Journal for Numerical Methods in Engineering, 1986, 22(3): 697-722. [59] LEE P S, BATHE K J. Development of MITC isotropic triangular shell finite elements[J]. Computers & Structures, 2004, 82: 945-962. [60] LEE Y, LEE P S, BATHE K J. The MITC3+ shell element and its performance[J]. Computers & Structures, 2014, 138: 12-23. [61] KO Y, LEE P S, BATHE K J. The MITC4+ shell element and its performance[J]. Computers & Structures, 2016, 169: 57-68. [62] KO Y, LEE P S, BATHE K J. The MITC4+ shell element in geometric nonlinear analysis[J]. Computers & Structures, 2017, 185: 1-14. [63] DVORKIN E N. Nonlinear analysis of shells using the MITC formulation[J]. Archives of Computational Methods in Engineering, 1995, 2(2): 1-50. [64] DVORKIN E N. Finite strain elasto-plastic formulations using the method of mixed interpolation of tensorial components[J]. Computational Mechanics, 1996, 18(4): 290-301. [65] SOUSA R J A D, YOON J W, CARDOSO R P R, et al. On the use of a reduced enhanced solid-shell (RESS) element for sheet forming simulations[J]. International Journal of Plasticity, 2007, 23(3): 490-515. [66] PARENTE M, VALENTE R, JORGE R, et al. Sheet metal forming simulation using EAS solid-shell finite elements[J]. Finite Elements in Analysis & Design, 2006, 42: 1137-1149. [67] MERAIM F A, COMBEXCURE A. SHB8PS-a new adaptive, assumed-strain continuum mechanics shell element for impact analysis[J]. Computers & Structures, 2002, 80: 791-803. [68] TRINH V D, MERAIM F A, COMBEXCURE A. A new assumed strain solid-shell formulation "SHB6" for the six-node prismatic finite element[J]. Journal of Mechanical Science and Technology, 2011, 25: 2345-2364. [69] WANG P, CHALAL H, MERAIM F A, et al. Explicit dynamic analysis of sheet metal forming processes using linear prismatic and hexahedral solid-shell elements[J]. Engineering Computations, 2017, 34(5): 1413-1445. [70] WANG P, CHALAL H, MERAIM F A. Quadratic solid-shell elements for nonlinear structural analysis and sheet metal forming simulation[J]. Computational Mechanics, 2017, 59(1): 161-186. [71] PARENTE M P L, VALENTE R A F, JORGE R M N, et al. Sheet metal forming simulation using EAS solid-shell finite elements[J]. Finite Elements in Analysis & Design, 2006, 42: 1137-1149. [72] LI Liming, LI Dayong, PENG Yinghong. A new stabilized enhanced assumed strain (EAS) solid-shell element[J]. Chinese Journal of Applied Mechanics, 2011, 28(2): 117-122. 李丽明, 李大永, 彭颖红. 一种带有沙漏控制的新型EAS实体壳单元[J]. 应用力学学报, 2011, 28(2): 117-122. [73] SOUSA R J A D, CARDOSO R P R, VALENTE R A F, et al. A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness: Part Ⅰ-Geometrically linear applications[J]. International Journal for Numerical Methods in Engineering, 2005, 62: 952-977. [74] SOUSA R J A D, CARDOSO R P R, VALENTE R A F, et al. A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness-Part Ⅱ: Nonlinear applications [J]. International Journal for Numerical Methods in Engineering, 2006, 67: 160-188. [75] CARDOSO R P R, YOON J W, MAHARDIKA M, et al. Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one-point quadrature solid-shell elements[J]. International Journal for Numerical Methods in Engineering, 2010, 75: 156-187. [76] SCHWARZE M, REESE S. A reduced integration solid-shell finite element based on the EAS and the ANS concept-Large deformation problems[J]. International Journal for Numerical Methods in Engineering, 2010, 80: 1322-1355. [77] FLORES F G. A simple reduced integration hexahedral solid-shell element for large strains[J]. Computer Methods in Applied Mechanics & Engineering, 2016, 303: 260-287. [78] WRIGGERS P. Computational contact mechanics[M]. Berlin: Springer-Verlag, 2006. [79] BRUNEEL H C J, RYCKE I D. QuickTrace: A fast algorithm to detect contact[J]. International Journal for Numerical Methods in Engineering, 2002, 54: 299-316. [80] YANG B, LAURSEN T A. A contact searching algorithm including bounding volume trees applied to finite sliding mortar formulations[J]. Computational Mechanics, 2008, 41: 189-205. [81] CHEN Chengjun, LIU Ming, CHEN Xiaowei, et al. Development of global contact searching method based on octree algorithm[J]. Chinese Journal of Computational Mechanics, 2017, 34(3): 322-329. 陈成军, 柳明, 陈小伟, 等. 基于八叉树的全局接触搜索算法研究[J]. 计算力学学报, 2017, 34(3): 322-329. [82] BELYTSCHKO T, NEAL M O. Contact-impact by the pinball algorithm with penalty and Lagrangian methods[J]. International Journal for Numerical Methods in Engineering, 1991, 31: 547-572. [83] BELYTSCHKO T, YEH I S. The splitting pinball method for contact-impact problems[J]. Computer Methods in Applied Mechanics & Engineering, 1993, 105: 375-393. [84] TUR M, GINER E, FUENMAYOR F J, et al. 2D contact smooth formulation based on the mortar method[J]. Computer Methods in Applied Mechanics & Engineering, 2012, 247-248: 1-14. [85] HACHANI M, FOURMENT L. A smoothing procedure based on quasi-C1 interpolation for 3D contact mechanics with applications to metal forming[J]. Computers & Structures, 2013, 128: 1-13. [86] NETO D M, OLIVEIRA M C, MENEZES L F. Surface smoothing procedures in computational contact mechanics[J]. Archives of Computational Methods in Engineering, 2017, 24: 37-87. [87] CHEN Chengjun, LIU Ming, CHEN Xiaowei, et al. A contact-impact algorithm based on the segment-to-segment local searching method[J]. Chinese Journal of Computational Mechanics, 2018, 35(2): 105-110. 陈成军, 柳明, 陈小伟, 等. 一种基于面-面局部搜索的接触算法[J]. 计算力学学报, 2018, 35(2): 105-110. [88] SUN Y, ZENG W D, ZHAO Y Q, et al. Modeling constitutive relationship of Ti40 alloy using artificial neural network[J]. Materials & Design, 2011, 32: 1537-1541. [89] XU R, YANG J, YAN W, et al. Data-driven multiscale finite element method: From concurrence to separation[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 363: 112893. [90] SUN X, LI H, ZHAN M, et al. Cross-scale prediction from RVE to component[J]. International Journal of Plasticity, 2021, 140: 102973. [91] GORJI M B, MOZAFFAR M, HEIDENREICH J N, et al. On the potential of recurrent neural networks for modeling path dependent plasticity[J]. Journal of the Mechanics and Physics of Solids, 2020, 143: 103972. [92] ABUEIDDA D W, KORIC S, SOBH N A, et al. Deep learning for plasticity and thermo-viscoplasticity[J]. International Journal of Plasticity, 2021, 136: 102852. [93] WASSERMAN M, MOR-YOSSEF Y, GREENBERG J B. A positivity-preserving, implicit defect-correction multigrid method for turbulent combustion[J]. Journal of Computational Physics, 2016, 316: 303-337. [94] LIU An, JU Yaping, ZHANG Chuhua. Multi-block multi-level grid method and parallel simulation of internal flows of transonic rotor[J]. Journal of Aerospace Power, 2018, 33(7): 1705-1712. 刘安, 琚亚平, 张楚华. 多块多重网格法及其跨声速转子内流并行模拟[J]. 航空动力学报, 2018, 33(7): 1705-1712. [95] FENG Y T, PERIĆ D, OWEN D R J. A non-nested Galerkin multi-grid method for solving linear and nonlinear solid mechanics problems[J]. Computer Methods in Applied Mechanics & Engineering, 1997, 144: 307-325. [96] FENG Y T, PERIĆ D, OWEN D R J. A multi-grid enhanced GMRES algorithm for elasto-plastic problems[J]. International Journal for Numerical Methods in Engineering, 1998, 42: 1441-1462. [97] FENG Y T, PERIĆ D. Coarse mesh evolution strategies in the Galerkin multigrid method with adaptive remeshing for geometrically non-linear problems[J]. International Journal for Numerical Methods in Engineering, 2000, 49: 547-571. [98] MOCELLIN K, FOURMENT L, COUPEZ T, et al. Toward large scale FE computation of hot forging process using iterative solvers, parallel computation and multigrid algorithms[J]. International Journal for Numerical Methods in Engineering, 2001, 52(5-6): 473-488. [99] REY B, MOCELLIN K, FOURMENT L. A node-nested Galerkin multigrid method for metal forging simulation[J]. Computing & Visualization in Science, 2008, 11: 17-25. [100] RAMADAN M, KHALED M, FOURMENT L. Speeding-up simulation of cogging process by multigrid method[J]. International Journal of Material Forming, 2019, 12: 45-55. [101] GUAN Y, XIN W, ZHAO G, et al. A nonlinear numerical analysis for metal-forming process using the rigid-(visco)plastic element-free Galerkin method[J]. International Journal of Advanced Manufacturing Technology, 2009, 42: 83-92. [102] LI Jianjun, ZHU Wenfeng. Numerical simulation and experiment of roller hemming-compression with flat surface-curved edge aluminum alloy sheet based on SPH[J]. Journal of Mechanical Engineering, 2020, 56(24): 61-71. 李建军, 朱文峰. 基于SPH的平面曲线铝合金薄板滚压成形数值仿真与试验研究[J]. 机械工程学报, 2020, 56(24): 61-71. [103] LIAN Yanping, ZHANG Fan, LIU Yan, et al. Material point method and its applications[J]. Advances in Mechanics, 2013, 43(2): 237-264. 廉艳平, 张帆, 刘岩, 等. 物质点法的理论和应用[J]. 力学进展, 2013, 43(2): 237-264. [104] ZHANG Xiong, LIAN Yanping, LIU Yan, et al. Material point method[M]. Beijing: Tsinghua University Press, 2013. 张雄, 廉艳平, 刘岩, 等. 物质点法[M]. 北京: 清华大学出版社, 2013. [105] SULSKY D, CHEN Z, SCHREYER. A particle method for history-dependent materials[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 118: 179-196. [106] GU X Y, DONG C Y, CHENG T. MPM simulations of high-speed machining of Ti6Al4V titanium alloy considering dynamic recrystallization phenomenon and thermal conductivity[J]. Applied Mathematical Modelling, 2018, 56: 517-538. [107] WIECKOWSKI Z. The material point method in large strain engineering problems[J]. Computer Methods in Applied Mechanics & Engineering, 2004, 193(39-41): 4417-4438. [108] XIE Guilan, YU Chao, GONG Shuguang, et al. Simulation of metal bulk forming based on MPM[J]. China Mechanical Engineering, 2016, 27(22): 3093-3093, 3102. 谢桂兰, 于超, 龚曙光, 等. 基于物质点法金属体积成形过程的仿真[J]. 中国机械工程, 2016, 27(22): 3093-3097, 3102. [109] VAUCORBEIL A D, NGUYEN V P, HUTCHINSONB C R. A total-Lagrangian material point method for solid mechanics problems involving large deformations[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 360: 112783. [110] XU J, CHEN X, ZHONG W, et al. An improved material point method for coining simulation[J]. International Journal of Mechanical Sciences, 2021, 196(11): 106258. [111] COOMBS W M, AUGARDE C E, BRENNAN A J, et al. On Lagrangian mechanics and the implicit material point method for large deformation elasto-plasticity[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 358: 112622. [112] ZHANG X, SZE K Y, MA S. An explicit material point finite element method for hyper-velocity impact[J]. International Journal for Numerical Methods in Engineering, 2006, 66: 689-706. [113] LIU Y, WANG H K, ZHANG X. A multiscale framework for high-velocity impact process with combined material point method and molecular dynamics[J]. International Journal of Mechanics & Materials in Design, 2013, 9: 127-139. [114] HE N, LIU Y, ZHANG X. Seamless coupling of molecular dynamics and material point method via smoothed molecular dynamics[J]. International Journal for Numerical Methods in Engineering, 2017, 112: 380-400. [115] VAUCORBEIL A D, NGUYEN V P, CHI N T. Karamelo: An open source parallel C++ package for the material point method[J]. Computational Particle Mechanics, 2021, 8: 767-789. [116] SINAIE S, NGUYEN V P, NGUYEN C T, et al. Programming the material point method in Julia[J]. Advances in Engineering Software, 2017, 105: 17-29. [117] VEIGA L B, BREZZI F, CANGIANI A, et al. Basic principles of virtual element methods[J]. Mathematical Models and Methods in Applied Sciences, 2013, 23: 199-241. [118] VEIGA L B D, BREZZI F, MARINI L D. Virtual elements for linear elasticity problems[J]. SIAM Journal on Numerical Analysis, 2013, 51(2): 794-812. [119] AHMAD B, ALSAEDI A, BREZZI F, et al. Equivalent projectors for virtual element methods[J]. Computers & Mathematics with Applications, 2013, 66: 376-391. [120] ARTIOLI E, VEIGA L B D, LOVADINA C, et al. Arbitrary order 2D virtual elements for polygonal meshes: part I, elastic problem[J]. Computational Mechanics, 2017, 60: 355-377. [121] ARTIOLI E, VEIGA L B D, LOVADINA C, et al. Arbitrary order 2D virtual elements for polygonal meshes: Part Ⅱ, inelastic problem[J]. Computational Mechanics, 2017, 60: 643-657. [122] WRIGGERS P, RUST W T, REDDY B D. A virtual element method for contact[J]. Computational Mechanics, 2016, 58: 1039-1050. [123] WRIGGERS P, RUST W T. A virtual element method for frictional contact including large deformations[J]. Engineering Computations, 2019, 36(7): 2133-2161. [124] HUDOBIVNIK B, ALDAKHEEL F, WRIGGERS P. A low order 3D virtual element formulation for finite elasto-plastic deformations[J]. Computational Mechanics, 2019, 63: 253-269. [125] PARK K, CHI H, PAULINO G H. Numerical recipes for elastodynamic virtual element methods with explicit time integration[J]. International Journal for Numerical Methods in Engineering, 2019, 121(1): 1-13. [126] PARK K, CHI H, PAULINO G H. On nonconvex meshes for elastodynamics using virtual element methods with explicit time integration[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 356: 669-684. [127] CIHAN M, HUDOBIVNIK B, ALDAKHEEL F, et al. 3D mixed virtual element formulation for dynamic elasto-plastic analysis[J]. Computational Mechanics, 2021, 68: 1-18. [128] HUA Chunjian, ZHAO Shengdun, SHEN Guangxian. Parallel computation in numerical simulation of metal forming[J]. Forging and Stamping Technology, 2005(1): 1-6. 化春键, 赵升吨, 申光宪. 数值模拟塑性成形过程的并行计算现状[J]. 锻压技术, 2005(1): 1-6. [129] PANTALÉ O. Parallelization of an object-oriented FEM dynamics code: Influence of the strategies on the Speedup[J]. Advances in Engineering Software, 2005, 36: 361-373. [130] CAI Y, LI G, LIU W. Parallelized implementation of an explicit finite element method in many integrated core (MIC) architecture[J]. Advances in Engineering Software, 2018, 116: 50-59. [131] KURAMAE H, IKEYA Y, SAKAMOTO H, et al. Multi-scale parallel finite element analyses of LDH sheet formability tests based on crystallographic homogenization method[J]. International Journal of Mechanical Sciences, 2010, 52: 183-197. [132] ZHANG J, ANKIT A, GRAVENKAMP H, et al. A massively parallel explicit solver for elasto-dynamic problems exploiting octree meshes[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 380: 113811. [133] WANG Hui, GUO Peiqing, CHEN Xiaolong. Testing and analysis of typical examples for ANSYS and Abaqus software GPU-accelerated performance[J]. Computer Engineering & Science, 2013, 35(11): 105-110. 王惠, 郭培卿, 陈小龙. ANSYS和Abaqus软件GPU加速性能典型算例测试与分析[J]. 计算机工程与科学, 2013, 35(11): 105-110. [134] QIU Deyuan. GPGPU programming technique: from GLSL, CUDA to OpenCL[M]. Beijing: China Machine Press, 2011. 仇德元. GPGPU编程技术: 从GLSL, CUDA到OpenCL[M]. 北京: 机械工业出版社, 2011. [135] WANG Jianhua, LI Guangyao, LI Sheng, et al. Rapid simulation of sheet forming based on GPU[J]. China Mechanical Engineering, 2010, 21(10): 1222-1227. 王建华, 李光耀, 李胜, 等. 基于GPU的冲压成形快速计算方法[J]. 中国机械工程, 2010, 21(10): 1222-1227. [136] BARTEZZAGHI A, CREMONESI M, PAROLINI N, et al. An explicit dynamics GPU structural solver for thin shell finite elements[J]. Computers & Structures, 2015, 154: 29-40. [137] CAI Y, LI G, WANG H, et al. Development of parallel explicit finite element sheet forming simulation system based on GPU architecture[J]. Advances in Engineering Software, 2012, 45: 370-379. [138] CAI Y, WANG G, LI G. A high performance crashworthiness simulation system based on GPU[J]. Advances in Engineering Software, 2015, 86: 29-38. [139] CAI Y, CUI X, LI G, et al. A parallel finite element procedure for contact-impact problems using edge-based smooth triangular element and GPU[J]. Computer Physics Communications, 2018, 225: 47-58. [140] STRHAR V, SLOTEN J V, FAMAEV N. Analyzing the potential of GPGPUs for real-time explicit finite element analysis of soft tissue deformation using CUDA[J]. Finite Elements in Analysis & Design, 2015, 105: 79-89. [141] MOZAFFAR M, AGBOR E N, LIN S, et al. Acceleration strategies for explicit finite element analysis of metal powder-based additive manufacturing processes using graphical processing units[J]. Computational Mechanics, 2019, 64: 879-894. [142] CAI Y, LI G, WANG H. A Parallel Node-based solution scheme for implicit finite element method using GPU[J]. Procedia Engineering, 2013, 61: 318-324. [143] CAI Yong, LI Guangyao, WANG Hu. A fast calculation method for large-scale shell structure based on multigrid and GPU parallel computing[J]. Engineering Mechanics, 2014, 31(5): 20-26. 蔡勇, 李光耀, 王琥. 基于多重网格法和GPU并行计算的大规模壳结构快速计算方法[J]. 工程力学, 2014, 31(5): 20-26. [144] FRUTOS M J, CASTEION M P J, PEREZ H D. Fine-grained GPU implementation of assembly-free iterative solver for finite element problems[J]. Computers & Structures, 2015, 157: 9-18. [145] WANG Chao. Multi-GPU parallel computing method for thin shell structure and its application in car body design[D]. Changsha: Hunan University, 2019. 汪超. 薄壳结构的多GPU并行计算方法及其在车身设计中的应用研究[D]. 长沙: 湖南大学, 2019. [146] TIAN Y, HU Y, SHEN X. A multi-GPU finite element computation and hybridcollision handling process framework for braindeformation simulation[J]. Computer Animation and Virtual Worlds, 2019, 30(1): 1846. |
[1] | ZHANG Saifan, LI Bo, XUAN Fuzhen. Signal Denoising and Classification Prediction Method for On-line Monitoring of Acoustic Emission During Laser melting Process [J]. Journal of Mechanical Engineering, 2024, 60(6): 163-176. |
[2] | CHU Duanfeng, LIU Hongxiang, GAO Bolin, WANG Jinxiang, YIN Guodong. Survey of Predictive Cruise Control for Vehicle Platooning [J]. Journal of Mechanical Engineering, 2024, 60(18): 218-246. |
[3] | LIU Jianqin, HU Guisong, QIAO Jinli, GUO Xiao. Research on Real-time Performance Prediction of TBM Based on Dual Neural Networks [J]. Journal of Mechanical Engineering, 2024, 60(16): 43-53. |
[4] | ZHAO Yan, LI She, CUI Xiangyang. Analysis of Sheet Metal Stamping Based on New Triangular Shell Element and Multiple Dynamic Adaptive Method [J]. Journal of Mechanical Engineering, 2024, 60(14): 153-165. |
[5] | BAI Yingchun, LIU Kang, LI Chao, HAN Xu. Eigenfrequency Topology Optimization of 3D Shell-infill Structures Based on Large-scale Parallel Computing [J]. Journal of Mechanical Engineering, 2024, 60(11): 32-40. |
[6] | HE Yunze, LI Xiang, WANG Hongjin, HOU Yuejun, ZHANG Fan, MU Xinying, LIU Hao, CHENG Hao, LI Shihua, LI Jie. A Review: Full-cycle Nondestructive Testing Based on Visible Light and Thermography of Wind Turbine Blade [J]. Journal of Mechanical Engineering, 2023, 59(6): 32-45. |
[7] | Siti Nor Azlina M. Ghazali, Muhamad Zahim Sujod, Mohd Shawal Jadin. A Multi-scale Smart Fault Diagnosis Model Based on Waveform Length and Autoregressive Analysis for PV System Maintenance Strategies* [J]. Chinese Journal of Electrical Engineering, 2023, 9(3): 99-110. |
[8] | ZHANG Shuye, DUAN Xiaokang, LUO Keyu, XU Sunwu, ZHANG Zhihao, CHEN Jieshi, HE Peng. Current Status of Electronic Packaging Materials Using Machine Learning [J]. Journal of Mechanical Engineering, 2023, 59(22): 222-233. |
[9] | HE Hongwen, WANG Haoyu, WANG Yong, LI Shuangqi. Lithium-ion Battery State of Health Estimation Based on Real-world Driving Data [J]. Journal of Mechanical Engineering, 2023, 59(22): 46-58. |
[10] | WANG Shuancheng, YANG Bing, LIAO Zhen, XIAO Shoune, KANG Guozheng, YANG Guangwu, ZHU Tao. Research on Short Fatigue Crack Initiation and Propagation of Metallic Materials:A Review [J]. Journal of Mechanical Engineering, 2023, 59(16): 32-53. |
[11] | HUA Feng, WANG Yasen, JIN Junyang, YUAN Ye. A Multi-Lossless Linear Model Learning Method with Data Privacy-Preserving [J]. Journal of Mechanical Engineering, 2023, 59(12): 17-27. |
[12] | ZHOU Zihong, YOU Weitao, LU Yinyu, XI Yufan, WANG Kexing, WANG Guanyun, SUN Lingyun. Shape-changing Interface Design with the User-defined Form and Self-sensing Capability [J]. Journal of Mechanical Engineering, 2023, 59(11): 84-93. |
[13] | YIN Guolu, JIANG Rui, XU Zhou, ZHOU Lei, NIU Yangyang, LÜ Lei, ZHU Tao. Fast and High Spatial Resolution Distributed Optical Fiber Sensing Technology and Its Application in Mechanical Deformation and Temperature Monitoring [J]. Journal of Mechanical Engineering, 2022, 58(8): 96-104. |
[14] | ZHANG Heng, LI Hao, DING Xiao-hong, HU Tian-nan, PAN Sheng, ZHU Ben-liang, NI Wei-yu, XU Shi-peng. Numerical Study on the Body-fitted Topology Optimization for Three-dimensional High Resolution Structure Design [J]. Journal of Mechanical Engineering, 2022, 58(5): 136-143. |
[15] | GUAN Yinxin, YANG Jixiang, DING Han. Data-driven Machine Tools Motion Control Error Modeling Method Using Control Signal as Intermediate Value [J]. Journal of Mechanical Engineering, 2022, 58(23): 178-187. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||