Journal of Mechanical Engineering ›› 2021, Vol. 57 ›› Issue (13): 1-17.doi: 10.3901/JME.2021.13.001
XIONG Wanli1,2, SUN Wenbiao1, LIU Kan1, XU Minghua1, PEI Ting1
Received:
2020-07-27
Revised:
2020-12-30
Online:
2021-07-05
Published:
2021-08-31
CLC Number:
XIONG Wanli, SUN Wenbiao, LIU Kan, XU Minghua, PEI Ting. Active Magnetic Bearing Technology Development in High-Speed Motorized Spindles[J]. Journal of Mechanical Engineering, 2021, 57(13): 1-17.
[1] 熊万里. 我国高性能机床主轴技术现状分析[J]. 金属加工(冷加工), 2011(18):6-11. XIONG Wanli. Recent development of high-performance machine tool spindles in China[J]. Metal Working (Metal Cutting), 2011(18):6-11. [2] 熊万里, 侯志泉, 吕浪, 等. 气体悬浮电主轴动态特性研究进展[J]. 机械工程学报, 2011, 47(5):40-58. XIONG Wanli, HOU Zhiquan, Lü Lang, et al. Review on the dynamic characteristics of aerostatic motorized spindles[J]. Journal of Mechanical Engineering, 2011, 47(5):40-58. [3] 熊万里, 阳雪兵, 吕浪, 等. 液体动静压电主轴关键技术综述[J]. 机械工程学报, 2009, 45(9):1-18. XIONG Wanli, YANG Xuebing, Lü Lang, et al. Review on key technology of hydrodynamic and hydrostatic high-frequency motor spindles[J]. Chinese Journal of Mechanical Engineering, 2009, 45(9):1-18. [4] FITTRO R L. A high-speed machining spindle with active magnetic bearings:Control theory, design and application[D]. Charlottesville:University of Virginia, 1998. [5] BRUNET M. Analysis of the performance of an AMB spindle in creep feed grinding[C]//Proceeding of The Fourth International Symposium on Magnetic Bearings, August 23-26, 1994, ETH Zurich, Switzerland. ETH Zurich:vdf Hochschulverlag, cop., 1994:519-524. [6] KEMPER H. Overhead suspension railway with wheel-less vehicles employing magnetic suspension from iron rails:Germany, 643316[P]. 1937-04-05. [7] SCHWEITZER G. Dynamics of rotors:Stabilization of self-excited rotor vibrations by an active damper[M]. Heidelberg:Springer Berlin Heidelberg, 1975. [8] STEPHENS L S. Design and control of active magnetic bearings for a high speed machining spindle[D]. Charlottesville:University of Virginia, 1995. [9] EDITOR. Magnetically levitated spindle to debut:Delivers up to 52 kW at 40, 000 rpm.[J]. American Machinist, 1989:78-79. [10] 遇立基. 磁力轴承及其在机床上的应用[J]. 机床, 1984(3):6-9. YU Liji. Magnetic bearings and the application in machine tools[J]. Manufacturing Technology & Machine Tool, 1984(3):6-9. [11] HIGUCHI T, MIZUNO T. Balancing measurement system using magnetic bearings[C]//Magnetic Bearings:Proceedings of the First International Symposium, June 6-8, 1988, ETH Zurich, Switzerland. Heidelberg:Springer Berlin Heidelberg, 1988:327-334. [12] MASLEN E H, SCHWEITZER G. Magnetic bearings:Introduction and survey[M]. Heidelberg:Springer Berlin Heidelberg, 2009. [13] ZIVI E L. Robust control of a magnetic bearing spindle for milling tool path error minimization[D]. City of College Park:University of Maryland, College Park, 1990. [14] 拓知上山. Techniques of levitating, rotating and driving masses. principles and applications of magnetic, electrostatic and ultrasonic levitation. Machine tool spindle with active magnetic bearings[J]. 計測と制御, 1999, 38(2):115-118. HIROCHIKA U. Techniques of levitating, rotating and driving masses. principles and applications of magnetic, electrostatic and ultrasonic levitation. machine tool spindle with active magnetic bearings[J]. Journal of The Society of Instrument and Control Engineers, 1999, 38(2):115-118. [15] MÜLLER M K. On-line process monitoring in high speed milling with an active magnetic bearing spindle[D]. Zürich:ETH Zurich, 2002. [16] 陈易新, 胡业发, 杨恒明, 等. 机床主轴可控磁力轴承的结构分析与设计[J]. 机床与液压, 1988(3):2-8. CHEN Yixin, HU Yefa, YANG Hengming, et al. Machine tool spindle controllable magnetic bearing structure analysis and design[J]. Machine Tool & Hydraulics, 1988(3):2-8. [17] 邢晓君. 有源磁轴承高频电主轴的研究[D]. 北京:清华大学, 1993. XING Xiaojun. Research on the high speed electro spindle on active magnetic bearings[D]. Beijing:Tsinghua University, 1993. [18] 张德魁, 赵雷, 赵鸿滨, 等. 磁悬浮轴承内圆磨床电主轴及其控制[J]. 轴承, 2000(11):11-13. ZHANG Dekui, ZHAO Lei, ZHAO Hongbin, et al. Magnetic bearing bore grinder spindle control[J]. Bearing, 2000(11):11-13. [19] 张德魁. 高速电磁轴承磨床电主轴的研究[D]. 北京:清华大学, 2000. ZHANG Dekui. Research on high speed AMB grinding electro spindle[D]. Beijing:Tsinghua University, 2000. [20] 杨作兴. 磁轴承磨床电主轴的鲁棒控制[D]. 北京:清华大学, 2001. YANG Zuoxing. Robust control for grinding spindle with AMB[D]. Beijing:Tsinghua University, 2001. [21] 朱润生, 杨作兴, 赵雷, 等. 主动磁轴承电主轴的磨削试验[J]. 机械工程学报, 2002, 38(6):134-138. ZHU Runshen, YANG Zuoxing, ZHAO Lei, et al. Grinding experiment using electro spindle levitated with active magnetic bearings[J]. Chinese Journal of Mechanical Engineering, 2002, 38(6):134-138. [22] 李新生, 杨作兴, 赵雷, 等. 磁轴承磨床电主轴全局线性化研究[J]. 机械工程学报, 2002, 38(10):122-126. LI Xinsheng, YANG Zuoxing, ZHAO Lei, et al. Study on global linearization for grinding spindle with active magnetic bearings[J]. Chinese Journal of Mechanical Engineering, 2002, 38(10):122-126. [23] 毛飞龙, 周凯, 荣海. 基于EtherCAT的磁悬浮电主轴通信系统设计[J]. 组合机床与自动化加工技术, 2019(8):35-38. MAO Feilong, ZHOU Kai, RONG Hai. Design of EtherCAT slave IO module based on FPGA[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2019(8):35-38. [24] 荣海, 周凯, 毛飞龙. 基于零偏置电流的磁悬浮电主轴动不平衡力抑制[J]. 清华大学学报(自然科学版), 2019, 59(8):683-688. RONG Hai, ZHOU Kai, MAO Feilong. Suppression of imbalance vibrations in magnetically suspended spindles based on zero-bias current control[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(8):683-688. [25] 杨新洲. 主动磁悬浮支承铣削电主轴系统结构及其动力学特性分析[D]. 上海:上海大学, 2004. YANG Xinzhou. System structure and dynamic properties analyses of a motorized milling spindle equipped with active magnetic bearings[D]. Shanghai:Shanghai University, 2004. [26] 成高, 张钢, 李松生, 等. 磁悬浮电主轴转子系统的动力学性能分析[J]. 振动工程学报, 2004(s1):40-42. CHENG Gao, ZHANG Gang, LI Songsheng, et al. Dynamic performance analysis for the system of electric spindle supported with AMB[J]. Journal of Vibration Engineering, 2004(s1):40-42. [27] 李松生, 张钢, 杨柳欣, 等. 新型数控铣床用磁悬浮高速电主轴的设计分析[J]. 制造技术与机床, 2005(3):110-112. LI Songsheng, ZHANG Gang, YANG Liuxin, et al. Design and analysis of high-speed magnetic suspension spindle for CNC milling machine[J]. Manufacturing Technology & Machine Tool, 2005(3):110-112. [28] 吴国庆, 张钢, 张建生, 等. 基于DSP的磁悬浮电主轴数字控制系统研究[J]. 电气自动化, 2005, 27(3):12-13, 24. WU Guoqing, ZHANG Gang, ZHANG Jiansheng, et al. Study of digital control system of motorized spindle supported with AMB based on DSP[J]. Electrical Automation, 2005, 27(3):12-13, 24. [29] 张建生. 磁悬浮支承系统中数控技术及功率放大器的应用研究[D]. 上海:上海大学, 2006. ZHANG Jiansheng. Study and applications on digital control technology and power amplifier in magnetic levitation support system[D]. Shanghai:Shanghai University, 2006. [30] 马兰兰. 精密气磁轴承的误差补偿和控制方法的研究[D]. 哈尔滨:东北林业大学, 2006. MA Lanlan. Study of gas and magnetic bearing error compensation and control method[D]. Harbin:Northeast Forestry University, 2006. [31] 周梓健. 超精高速动静压气磁轴承主轴稳定性分析及测控技术研究[D]. 哈尔滨:东北林业大学, 2019. ZHOU Zijian. Research on stability analysis and measurement and control technology of ultra-precision high-speed dynamic and static pressure gas bearing[D]. Harbin:Northeast Forestry University, 2019. [32] 徐欣, 谢振宇, 龙亚文. 低损耗磁悬浮电主轴的动态性能[J]. 航空动力学报, 2014, 29(2):343-349. XU Xin, XIE Zhenyu, LONG Yawen. Dynamic characteristics of low loss motorized spindle suspended by magnetic bearings[J]. Journal of Aerospace Power, 2014, 29(2):343-349. [33] 赵静, 谢振宇, 杨红进, 等. 磁悬浮电主轴的模糊控制策略研究[J]. 机床与液压, 2015(17):1-6. ZHAO Jing, XIE Zhenyu, YANG Hongjin, et al. Research of fuzzy control strategy for motorized spindle supported by active magnetic bearings[J]. Machine Tool & Hydraulics, 2015(17):1-6. [34] 于坤. 磁悬浮电主轴的控制策略及工业应用研究[D]. 南京:南京航空航天大学, 2016. YU Kun. Research on control strategy and industrial application of motorized spindle supported by active magnetic bearing[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016. [35] 张晓阳, 谢振宇, 黄云龙, 等. 磁悬浮电主轴集成控制系统的动态性能研究[J]. 机械与电子, 2017, 35(4):3-8. ZHANG Xiaoyang, XIE Zhenyu, HUANG Yunlong, et al. Research on dynamic performance of integrated control system of magnetic suspension spindle[J]. Machinery & Electronics, 2017, 35(4):3-8. [36] 祝红祥. 磁悬浮电主轴的振动控制策略研究[D]. 南京:南京航空航天大学, 2018. ZHU Hongxiang. Research on vibration control strategy of the maglev motorized spindle[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018. [37] 李波, 黄守道. 超高速数控磨床磁浮电主轴的研究[J]. 精密制造与自动化, 2006(4):22-25, 30. LI Bo, HUANG Shoudao. Research on electrospindle levitated with magnetic bearings in super-high speed CNC grinder[J]. Precise Manufacturing & Automation, 2006(4):22-25, 30. [38] 刘淑琴. 磁悬浮轴承技术在电主轴中的应用[J]. 机械工人(冷加工), 2005(8):21-22, 32. LIU Shuqin. Application of magnetic bearing in motorized spindle[J]. Machinist Metal Cutting, 2005(8):21-22, 32. [39] 卞斌, 刘淑琴, 贺思艳, 等. 磁悬浮轴承磨床电主轴中拍振现象的分析[J]. 山东大学学报:工学版, 2012, 42(3):133-137, 142. BIAN Bin, LIU Shuqin, HE Siyan, et al. Analysis of beat vibration phenomenon in the AMB spindle[J]. Journal of Shandong University of Technology, 2012, 42(3):133-137, 142. [40] 卞斌. 基于DSP平台的磁悬浮轴承数字控制系统[D]. 济南:山东大学, 2012. BIAN Bin. Digital control system of active magnetic bearing based on DSP platform[D]. Jinan:Shandong University, 2012. [41] 李德广, 刘淑琴, 樊迪. 基于磁悬浮轴承高速电主轴的法向磨削力检测方法[J]. 机械工程学报, 2012, 48(24):1-7. LI Deguang, LIU Shuqin, FAN Di. Normal grinding force measuring based on high speed magnetic bearing spindle[J]. Journal of Mechanical Engineering, 2012, 48(24):1-7. [42] 陈帝伊, 刘淑琴, 马孝义. 径向磁悬浮电主轴系统设计研究[J]. 动力学与控制学报. 2009, 7(4):358-362. CHEN Diyi, LIU Shuqin, MA Xiaoyi. Systems analysis and design of radial magnetic bearings[J]. Journal of Dynamics and Control, 2009, 7(4):358-362. [43] 张亮. 磁悬浮电主轴温度场的仿真与实验[D]. 武汉:武汉理工大学, 2015. ZHANG Liang. Simulation and experiment of temperature field for active magnetic bearing[D]. Wuhan:Wuhan University of Technology, 2015. [44] 诸德宏. 交流磁轴承支承电主轴系统设计与控制研究[D]. 镇江:江苏大学, 2009. ZHU Dehong. Design and control research for electric spindle supported by AC active magnetic bearings[D]. Zhenjiang:Jiangsu University, 2009. [45] 陈瑞, 刘贤兴. 五自由度磁悬浮电主轴的结构设计与仿真[J]. 电机与控制应用, 2011, 38(11):1-5, 15. CHEN Rui, LIU Xianxing. Structural design and simulation analysis of five freedom degree magnetic bearings electric spindle[J]. Electric Machines & Control Application, 2011, 38(11):1-5, 15. [46] 刘贤兴, 吴莹. 五自由度磁悬浮电主轴结构与有限元分析[J]. 现代科学仪器, 2014(1):51-56. LIU Xianxing, WU Ying. Structure and finite element analysis of five degrees of freedom magnetic bearings electric spindle[J]. Modern Scientific Instruments, 2014(1):51-56. [47] 鞠金涛. 磁悬浮电主轴用三极混合磁轴承非线性研究与结构优化[M]. 镇江:江苏大学出版社, 2017. JU Jintao. Nonlinearity analysis and structure optimization of three-pole HMB used in magnetic levitated electric spindle[M]. Zhenjiang:Jiangsu University Press, 2017. [48] SUN X, SU B, CHEN L, et al. Precise control of a four degree-of-freedom permanent magnet biased active magnetic bearing system in a magnetically suspended direct-driven spindle using neural network inverse scheme[J]. Mechanical Systems & Signal Processing, 2017, 88:36-48. [49] 蒋成勇. NC机床磁悬浮电主轴控制系统研究[D]. 大连:大连交通大学, 2006. JIANG Chengyong. Study on magnetic motor spindle control system for nc machine tools[D]. Dalian:Dalian Jiaotong University, 2006. [50] 张建生, 沈莹雅, 王一夫, 等. 鲁棒反演滑模控制在磁悬浮电主轴中的应用[J]. 制造技术与机床, 2015(12):82-86. ZHANG Jiansheng, SHEN Yingya, WANG Yifu, et al. Application of robust backstepping sliding-mode control in magnetic motorized spindle[J]. Manufacturing Technology & Machine Tool, 2015(12):82-86. [51] 钱永明, 吴强, 马苏扬, 等. 影响磁悬浮电主轴单元回转精度因素的分析[J]. 机床与液压, 2015, 43(13):24-27, 105. QIAN Yongming, WU Qiang, MA Suyang, et al. Analysis of impact factors on the rotary accuracy of motorized spindle unit with AMB[J]. Machine Tool & Hydraulics, 2015, 43(13):24-27, 105. [52] QIAO X, HU G. Active control for multi-node unbalanced vibration of flexible spindle rotor system with active magnetic bearing[J]. Shock and Vibration, 2017, 2017:1-9. [53] 乔晓利. 磁悬浮电主轴系统动态分析及振动控制技术综述[J]. 河北科技大学学报, 2016, 37(5):441-448. QIAO Xiaoli. Magnetic suspension motorized spindle-cutting system dynamics analysis and vibration control review[J]. Journal of Hebei University of Science and Technology, 2016, 37(5):441-448. [54] 陈攀, 康辉民, 陈鹏, 等. 主动磁悬浮电主轴最佳切削速度区间研究[J]. 机械科学与技术, 2019, 38(12):1904-1909. CHEN Pan, KANG Huimin, CHEN Peng, et al. Research on optimal cutting speed range of active magnetic suspension electric spindle[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(12):1904-1909. [55] 陈鹏, 康辉民, 胡斌梁, 等. 切削负载下磁悬浮电主轴系统的振动响应分析[J]. 组合机床与自动化加工技术, 2019(7):22-25. CHEN Peng, KANG Huimin, HU Binliang, et al. Vibration response analysis of magnetic suspension electric spindle system under cutting load[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2019(7):22-25. [56] 柳伟兵. 磁悬浮铣削电主轴振动控制研究[D]. 成都:成都理工大学, 2019. LIU Weibing. Study on vibration control of milling spindle with active magnetic bearings[D]. Chengdu:Chengdu University of Technology, 2019. [57] MASLEN E H, TRAXLER A. Magnetic Bearings:Hardware components[M]. Heidelberg:Springer Berlin Heidelberg, 2009. [58] HANS-JOACHIM K, MARCEL G, YURY B, et al. Investigation of adaptive spindle system with active electromagnetic bearing[J]. Procedia CIRP, 2016, 46:379-382. [59] ZWYSSIG C, KOLAR J W, ROUND S D. Mega speed drive systems:Pushing beyond 1 million r/min[J]. IEEE/ASME Transactions on Mechatronics, 2009, 14(5):564-574. [60] HARA S, ECHIGO K. A trial product of ultra precision spindle[C]//The Third International Symposium on Magnetic Bearings, July 29-31, 1992, Alexandria, Virginia. Technomic Pub. Co., 1992:421-428. [61] 张维煜, 朱熀秋, 陈涛, 等. 一种气体-磁轴承混合支承的电主轴及其控制系统设计[J]. 轴承, 2016(11):6-11. ZHANG Weiyu, ZHU Huangqiu, CHEN Tao, et al. A motorized spindle supported by gas bearing and radial-axial hybrid magnetic bearing and design of its control system[J]. Bearing, 2016, (11):6-11. [62] 刘永良, 李树森. 超精密气磁轴承主轴系统的技术发展[J]. 机械工程师, 2006(10):24-25. LIU Yongliang, LI Shusen. The technical development of ultra precision gas-magnetic bearings[J]. Mechanical Engineer, 2006(10):24-25. [63] HESHMAT H, MING CHEN H, WALTON J F I. On the performance of hybrid foil-magnetic bearings[J]. Journal of Engineering for Gas Turbines and Power, 2000, (1):73-81. [64] SWANSON E E, HESHMAT H. Performance of a foil-magnetic hybrid bearing[J]. Journal of Engineering for Gas Turbines and Power, 2002(2):375-382. [65] 赵宁. 磁气混合轴承中弹性箔片径向动压气体轴承的数值分析研究[D]. 南京:南京航空航天大学, 2004. ZHAO Ning. An analysis of a compliant multi-leaf journal self-acting air bearing unite with active magnetic bearing[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2004. [66] 乔雷. 磁气混合轴承实验平台的设计与研究[D]. 南京:南京航空航天大学, 2006. QIAO Lei. AMB-AB platfom design and study[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2006. [67] JEONG S, LEE Y B. Vibration control of high-speed rotor supported by hybrid foil-magnetic bearing with sudden imbalance[J]. Journal of Vibration and Control, 2015, 23(8):1296-1308. [68] JEONG S, LEE Y B. Effects of eccentricity and vibration response on high-speed rigid rotor supported by hybrid foil-magnetic bearing[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2016, 230(6):994-1006. [69] PHAM M N, AHN H. Experimental optimization of a hybrid foil-magnetic bearing to support a flexible rotor[J]. Mechanical Systems and Signal Processing, 2014, 46(2):361-372. [70] YANG B, GENG H, SUN Y, et al. Dynamic characteristics of hybrid foil-magnetic bearings (HFMBs) concerning eccentricity effect[J]. International Journal of Applied Electromagnetics and Mechanics, 2016, 52(1-2):271-279. [71] TIAN Y, SUN Y, YU L. Advanced controller of a hybrid foil-magnetic bearing[C]//The 14th International Symposium on Magnetic Bearings, August 11-14, Kepler University, Linz, Austria. 2014:77-82. [72] 刘暾, 葛卫平, 齐乃明, 等. 超精气磁轴承混合轴系的研究[J]. 中国机械工程, 2002, 13(2):167-170. LIU Tun, GE Weiping, QI Naiming, et al. Investigation of super-precision shafting contained by gas and magnetic bearings[J]. China Mechanical Engineering, 2002, 13(2):167-170. [73] 高景洲. 超精密气磁轴承主轴系统静动力学特性及主轴控制研究[D]. 哈尔滨:东北林业大学, 2014. GAO Jingzhou. Static-dynamic characteristics and the control method research of ultra-precision gas-magnetic bearing principal axis system[D]. Harbin:Northeast Forestry University, 2014. [74] 蔡自兴. 智能控制原理与应用[M]. 3版. 北京:清华大学出版社, 2019. CAI Zixing. Intelligent control:principles and applications third edition[M]. 3rd ed. Beijing:Tsinghua University Press, 2019. [75] 张铁柱. 无模型控制的理论与应用研究[D]. 沈阳:东北大学, 2002. ZHANG Tiezhu. Study on theory and application of model free control[D]. Shenyang:Northeastern University, 2002. [76] HOU Z, JIN S. Model free adaptive control:theory and applications[M]. Boca Raton:CRC Press, 2013. [77] ANAND D K, ANJANAPPA M. Accuracy enhanced machining with a magnetic spindle[J]. IFAC Proceedings Volumes, 1992, 25(6):287-291. [78] ANJANAPPA M, ANAND D K, KIRK J A, et al. Retrofitting a CNC machining center with a magnetic spindle for tool path error control[J]. IFAC Proceedings Volumes, 1990, 23(3):511-515. [79] LEE C, YOON Y, JEONG H. Compensation of tool axis misalignment in active magnetic bearing spindle system[J]. Journal of Mechanical Science and Technology, 1997(2):155-163. [80] 邢涛. 电磁轴承磨床系统控制方法及实验研究[D]. 哈尔滨:哈尔滨工业大学, 2005. XING Tao. Electromagnetic bearing grinding machine system control method and experiment research[D]. Harbin:Harbin Institute of Technology, 2005. [81] 赵宁. 磁悬浮控制系统分析与设计[D]. 沈阳:东北大学, 2010. ZHAO Ning. Analysis and design of magnetic levitation control system[D]. Shenyang:Northeastern University, 2010. [82] SUN X, XUE Z, CHEN L, et al. Radial position control of a magnetically suspended rotor system in a direct-driven spindle using inverse system scheme[J]. Transactions of the Institute of Measurement and Control, 2016, 38(9):1073-1086. [83] HENTATI T, BOUAZIZ A, BOUAZIZ S, et al. Dynamic behavior of active magnetic bearings spindle in high-speed domain[J]. International Journal of Mechatronics and Manufacturing Systems, 2013(5-6):474-492. [84] PESCH A H, SMIRNOV A, PYRHÖNEN O, et al. Magnetic bearing spindle tool tracking through μ-synthesis robust control[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(3):1448-1457. [85] 乔晓利, 祝长生. 永磁型电主轴多频率振动的主动控制[J]. 中国机械工程, 2014, 25(2):162-168. QIAO Xiaoli, ZHU Changsheng. An active multiple frequency vibration control scheme of grinding wheel in permanent magnet (PM) electric spindle rotor system[J]. China Mechanical Engineering, 2014, 25(2):162-168. [86] PARK C H, HAM S Y, HONG D E, et al. Development of high speed spindle for machine tool with magnetic bearings[J]. Transactions of the Korean Society for Noise and Vibration Engineering, 2015(12):895-900. [87] 刘爱珊. 数字信号处理及DSP芯片的发展前景[J]. 光通信研究, 2001(5):48-51. LIU Aishan. The prospect of digital signal processing and digital signal processors[J]. Study Optical Communications, 2001(5):48-51. [88] CARABELLI S, MUZZARELLI M, MADDALENO F. High-efficiency linear power amplifier for active magnetic bearings[J]. IEEE Transactions on Industrial Electronics, 2000, 47(1):17-24. [89] KEITH F J, MASLEN E H, HUMPHRIS R R. Switching amplifier design for magnetic bearings[C]//The Second International Symposium on Magnetic Bearings, 1990, Tokyo, Japan. 1990:211-218. [90] CHANGSHENG Z, ZHIWEI M. A PWM based switching power amplifier for active magnetic bearings[C]//The Eighth International Conference on Electrical Machines and Systems, 2005, Nanjing China. IEEE, 2006:1563-1568. [91] 汤恩琼, 房建成, 韩邦成. 磁轴承PWM开关功放电流实时降噪[J]. 北京航空航天大学学报, 2015, 41(2):296-301. TANG Enqiong, FANG Jiancheng, HAN Bangcheng. Real-time de-noising of PWM switching amplifier current in magnetic bearing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(2):296-301. [92] 田希晖, 房建成, 刘刚. 基于空间电压矢量PWM控制的磁轴承开关功放[J]. 系统工程与电子技术, 2008, 30(8):1598-1602. TIAN Xihui, FANG Jiancheng, LIU Gang. Magnetic bearing switching power amplifier based on SVPWM control[J]. Systems Engineering and Electronics, 2008, 30(8):1598-1602. [93] 张德魁, 赵雷, 赵鸿宾. 电流响应速度及力响应速度对磁轴承系统性能的影响[J]. 清华大学学报(自然科学版), 2001, 41(6):23-26. ZHANG Dekui, ZHAO Lei, ZHAO Hongbin. Effect of current response rate and force response rate on performance of magnetic bearing systems[J]. Journal of Tsinghua University, 2001, 41(6):23-26. [94] WANG D, WANG F, ZHAO Y. Study on three-level power amplifier of magnetic bearings for high speed machine[C]//The 3rd IEEE International Conference on Computer Science and Information Technology, Chengdu, China. IEEE, 2010:607-612. [95] GUO Y, LING Z, ZHANG X. A novel PWM power amplifier of magnetic suspension spindle control system for micro EDM[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(5/8):961-973. [96] 田希晖, 房建成, 刘刚. 磁悬浮飞轮混合磁轴承模糊PI控制PWM开关功放[J]. 仪器仪表学报, 2008, 29(5):943-948. TIAN Xihui, FANG Jiancheng, LIU Gang. Magnetic suspending flywheel hybrid magnetic bearing PWM switching power amplifier based on fuzzy PI control[J]. Chinese Journal of Scientific Instrument, 2008, 29(5):943-948. [97] 费清照, 邓智泉, 王晓琳, 等. 适用于磁悬浮轴承的新型五相六桥臂开关功放控制策略[J]. 中国电机工程学报, 2012, 32(9):124-131. FEI Qingzhao, DENG Zhiquan, WANG Xiaolin, et al. A control strategy of novel five-phase six-leg switching power amplifiers applied in magnetic levitating bearing systems[J]. Proceedings of the CSEE, 2012, 32(9):124-131. [98] 李祥生, 邓智泉, 陈志达, 等. 电流型四桥臂开关功放控制方法[J]. 电工技术学报, 2011, 26(2):156-164. LI Xiangsheng, DENG Zhiquan, CHEN Zhida, et al. A control method of current mode four-leg switching power amplifier[J]. Transactions of China Electrotechnical Society, 2011, 26(2):156-164. [99] 韩辅君, 房建成, 刘刚. SVPWM方法在磁轴承开关功放中的设计及应用[J]. 电工技术学报, 2009, 24(5):119-124. HAN Fujun, FANG Jiancheng, LIU Gang. Design and implementation of SVPWM switching power amplifiers for active magnetic bearing[J]. Transactions Of China Electrotechnical Society, 2009, 24(5):119-124. [100] FANG J, REN Y. Self-adaptive phase-lead compensation based on unsymmetrical current sampling resistance network for magnetic bearing switching power amplifiers[J]. IEEE Transactions on Industrial Electronics, 2012, 59(2):1218-1227. [101] 范友鹏, 刘淑琴, 李红伟, 等. 基于干扰观测器的磁轴承开关功放延时补偿[J]. 电机与控制学报, 2013, 17(5):103-109. FAN Youpeng, LIU Shuqin, LI Hongwei, et al. Time delay compensation of switching power amplifier for magnetic bearing based on DOB[J]. Electric Machines and Control, 2013, 17(5):103-109. [102] 王军, 徐龙祥. 磁悬浮轴承并联谐振直流环节开关功率放大器[J]. 中国电机工程学报, 2009, 29(12):87-92. WANG Jun, XU Longxiang. Parallel resonant dc link soft-switching power amplifier of magnetic bearing[J]. Proceedings of The Chinese Society for Electrical Engineering, 2009, 29(12):87-92. [103] FUKUDA H, NAKAOKA M. High-frequency ZVS PWM power amplifier system with high-precision magnetic-field current tracking control scheme[C]//International IEEE/IAS Conference on Industrial Automation and Control:Emerging Technology Applications, 1995, Taipei, Taiwan, China. IEEE, 1995:106-113. [104] FANG J, ZHANG H, LIU H. Online current signal de-noising of magnetic bearing switching power amplifier based on lifting wavelet transform[J]. IET Electric Power Applications, 2016, 10(8):799-806. [105] HYEONG-JOON, JEON S, HAN D, et al. New design of cylindrical capacitive sensor for on-line precision control of AMB spindle[J]. IEEE Transactions on Instrumentation and Measurement, 2001, 50(3):757-763. [106] 于亚婷, 杜平安, 廖雅琴. 线圈形状及几何参数对电涡流传感器性能的影响[J]. 仪器仪表学报, 2007, 28(6):1045-1050. YU Yating, DU Pingan, LIAO Yaqin. Study on effect of coil shape and geometric parameters on performance of eddy current sensor[J]. Chinese Journal Of Scientific Instrument, 2007, 28(6):1045-1050. [107] 丛华. 磁悬浮轴承电涡流传感器研究与设计[D]. 北京:清华大学, 1999. CONG Hua. Research and design of AMB eddy current sensor[D]. Beijing:Tsinghua University, 1999. [108] 丛华, 张德魁, 赵鸿宾. 电涡流传感器温度稳定性研究[J]. 清华大学学报(自然科学版), 1999, 39(10):65-68. CONG Hua, ZHANG Dekui, ZHAO Hongbin. Research on temperature stability of eddy current sensor[J]. Journal of Tsinghua University (Science and Technology), 1999, 39(10):65-68. [109] VYROUBAL, DARKO, LACKOVIC, et al. Target temperature effect on eddy-current displacement sensing[C]//2015 IEEE Sensors Applications Symposium (SAS 2015), 13-15 April, 2015, Zadar, Croatia. Zadar, 2015:1-5. [110] WANG H, FENG Z. Ultra-stable and highly sensitive eddy current displacement sensor using self-temperature compensation[J]. Sensors and Actuators, 2013, A203:362-368. [111] 蓝奇, 马伏花, 农正, 等. 镍铬合金导线在电涡流位移传感器中的应用[J]. 传感器与微系统, 2014, 33(2):158-160. LAN Qi, MA Fuhua, NONG Zheng, et al. Application of nichrome wire in eddy current displacement sensor[J]. Transducer and Microsystem Technologies, 2014, 33(2):158-160. [112] 于亚婷, 杜平安, 廖雅琴, 等. 基于BP网络的电涡流传感器非线性补偿[J]. 传感器与微系统, 2007, 26(10):54-56. YU Yating, DU Pingan, LIAO Yaqin, et al. Nonlinear errors compensation method of eddy current sensor based on BP neural network[J]. Transducer and Microsystem Technologies, 2007, 26(10):54-56. [113] 王志强, 刘刚, 李红. 磁轴承用电涡流位移传感器串扰产生及抑制方法研究[J]. 仪器仪表学报, 2010, 31(5):1035-1040. WANG Zhiqiang, LIU Gang, LI Hong. Research on crosstalk noise of eddy current displacement sensor for active magnetic bearing[J]. Chinese Journal of Scientific Instrument, 2010, 31(5):1035-1040. [114] MEEKS C, MCMULLEN P. Lightweight magnetic bearing system for aircraft gas turbine engines[C]//Proceeding of The Fourth International Symposium on Magnetic Bearings, August 23-26, 1994, ETH Zurich, Switzerland. ETH Zurich:vdf Hochschulverlag, cop., 1994:429-434. [115] MORIYAMA S, WATANABE K, HAGA T. Inductive sensing system for active magnetic suspension control[C]//Proceedings of the Sixth International Symposium on Magnetic Bearings, August 5-7, Cambridge, Massachusetts, USA. Technomic, 1998:529-537. [116] 张利胜, 王坤, 郑世强. 磁轴承用新型自感位移传感器设计与实验研究[J]. 仪器仪表学报, 2018, 39(1):100-109. ZHANG Lisheng, WANG Kun, ZHENG Shiqiang. Design and experimental study of a novel self-inductance displacement sensor for active magnetic bearings[J]. Chinese Journal of Scientific Instrument, 2018, 39(1):100-109. [117] 陈瑞. 自感式电感传感器的参数优化和性能实验[D]. 济南:山东大学, 2019. CHEN Rui. Parameter optimization and performance experiment of self-inductive sensor[D]. Jinan:Shandong University, 2019. [118] WANG K, ZHANG L, LE Y, et al. Optimized differential self-inductance displacement sensor for magnetic bearings:design, analysis and experiment[J]. IEEE Sensors Journal, 2017, 17(14):4378-4387. [119] 杨朝英, 徐龙祥. 磁轴承系统中差动变压器式位移传感器的研究[J]. 传感器技术, 2005, 24(9):8-9, 12. YANG Chaoying, XU Longxiang. Study on differential transformer displacement sensors for active magnetic bearings[J]. Journal of Transducer Technology, 2005, 24(9):8-9, 12. [120] FILATOV A V, HAWKINS L A. An axial position sensor for active magnetic bearings[C]//Proceedings of the ASME Turbo Expo 2010. v.3, Glasgow, UK. 2010:99-106. [121] CHEN S, LE D, NGUYEN V. Inductive displacement sensors with a notch filter for an active magnetic bearing system[J]. Sensors, 2014, 14(7):12640. [122] 江鹏, 汪希平, 夏翠艳, 等. 集成式径向磁轴承用差动位移传感器的设计[J]. 仪表技术与传感器, 2008(12):11-13. JIANG Peng, WANG Xiping, XIA Cuiyan, et al. Design of integrative differential displacement sensor for radial magnetic bearing[J]. Instrument Technique and Sensor, 2008(12):11-13. [123] 段中华, 王中训, 胡自强. AD698在DGC-6PG/A差动电感式位移传感器中的应用[J]. 现代电子技术, 2008, 31(4):162-164. DUAN Zhonghua, WANG Zhongxun, HU Ziqiang. Application and research of AD698 in the DGC-6PG/A differential inductance displacement sensor[J]. Modern Electronics Technique, 2008, 31(4):162-164. [124] 张剀, 董金平, 戴兴建. AD698解调的电感位移传感器性能提升[J]. 仪表技术与传感器, 2010(9):10-12. ZHANG Kai, DONG Jinping, DAI Xingjian. Performance improvement of inductive displacement sensor based on AD698[J]. Instrument Technique and Sensor, 2010(9):10-12. [125] 王秀珍. 磁力轴承电感位移传感器的研究[D]. 武汉:武汉理工大学, 2009. WANG Xiuzhen. Study on inductive displacement sensors for magnetic bearings[D]. Wuhan:Wuhan University of Technology, 2009. [126] 刘亚婷, 张剀, 徐旸. 基于集成解调芯片的电感式位移传感器[J]. 储能科学与技术, 2019, 8(5):891-896. LIU Yating, ZHANG Kai, XU Yang. Inductive displacement sensors based on the integrated demodulation chip[J]. Energy Storage Science and Technology, 2019, 8(5):891-896. |
[1] | YAN Ruqiang, XU Wengang, WANG Zhiying, ZHU Qixiang, ZHOU Zheng, ZHAO Zhibin, SUN Chuang, WANG Shibin, CHEN Xuefeng, ZHANG Junhui, XU Bing. Research Status and Challenges on Fault Diagnosis Methodology for Fuel Control System of Aero-engine [J]. Journal of Mechanical Engineering, 2024, 60(4): 3-31. |
[2] | WANG Xingjian, YANG Xinyu, WANG Shaoping. Review of Fault-tolerant Control for Flight Control System [J]. Journal of Mechanical Engineering, 2024, 60(4): 50-65. |
[3] | ZHANG Xiaojun, WU Yaqi, LIU Haoxue, ZHONG Daofang. Design and Analysis of Wheel-footed Magnetic Adsorption Wall-climbing Robot with Passing Obstacles Capability [J]. Journal of Mechanical Engineering, 2024, 60(1): 248-261. |
[4] | XIN Yang-gui, GAO Shi-yi, ZHAO Yun-qiang, LI Su, XU Wang-hui, YU Chen. Research and Application of Force-position Mixed-control of Robotic Friction Stir Welding [J]. Journal of Mechanical Engineering, 2023, 59(8): 91-98. |
[5] | ZHANG Peng, ZHU Changsheng. Stability of Active Magnetic Bearing Flexible Rotor System under Base Swing Condition [J]. Journal of Mechanical Engineering, 2023, 59(5): 167-179. |
[6] | WANG Xin, YIN Xunhe, LIANG Huaqing, CHEN Lihong. Self-healing Control Based on State Observer for Networked Control Systems [J]. Journal of Mechanical Engineering, 2023, 59(18): 95-110. |
[7] | LI Da, ZHANG Puchen, LIN Ni, ZHANG Zhaosheng, WANG Zhenpo, DENG Junjun. Safety Estimation Method of Electric System in Electric Vehicles Based on Multiple Model Coupling [J]. Journal of Mechanical Engineering, 2023, 59(12): 354-363. |
[8] | ZHANG Jingzhong, PANG Tao, LIU Yifeng, ZHANG Xiaobai, YU Changhai, LI Tong. Active Power Automatic Control of Wind/Photovoltaic System in Electricity Market [J]. Journal of Electrical Engineering, 2022, 17(3): 203-209. |
[9] | TANG Xiaolin, CHEN Jiaxin, GAO Bolin, YANG Kai, HU Xiaosong, LI Keqiang. Deep Reinforcement Learning-based Integrated Control of Hybrid Electric Vehicles Driven by High Definition Map in Cloud Control System [J]. Journal of Mechanical Engineering, 2022, 58(24): 163-177. |
[10] | LI Chao, XIE Zhengyu, WU Chuanxiang, WANG Yijian. Research on Non-directional Differential Control Strategy of Active Magnetic Bearing [J]. Journal of Mechanical Engineering, 2022, 58(21): 161-170. |
[11] | MENG Boyang, LI Maoyue, LIU Xianli, WANG Lihui, LIANG S Y, WANG Zhixue. Research Progress on the Architecture and Key Technologies of Machine Tool Intelligent Control System [J]. Journal of Mechanical Engineering, 2021, 57(9): 147-166. |
[12] | HAO Yunxiao, QIAO Shufei, XIA Lianpeng, QUAN Long, ZHAO Bin. Coupling Characteristics and Position Control of Hydraulic-electric Hybrid Linear Drive System [J]. Journal of Mechanical Engineering, 2021, 57(22): 386-394. |
[13] | WANG Xiaobo, ZHU Changsheng. Multi-frequency Compensation for Active Magnetic Bearing-Flexible Rotor System Based on Adaptive Least Mean Square Algorithm with a Phase Shift [J]. Journal of Mechanical Engineering, 2021, 57(17): 110-119. |
[14] | LI Guojie. Key Characteristics and General Framework of Control System for Intelligent Crane [J]. Journal of Mechanical Engineering, 2020, 56(24): 254-268. |
[15] | XIA Limeng,SONG Wei,GUO Fei,WANG Chong,LI Shiqun. Research on Automatic Transmission Acceptance Method of Smart Substation Supervisory and Control Information [J]. Journal of Electrical Engineering, 2020, 15(2): 104-109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||