[1] LIU Z,QIU H,LI X,et al. Review of large spacecraft deployable membrane antenna structures[J]. Chinese Journal of Mechanical Engineering,2017,30(6):1447-1459. [2] ELLIOTT K,HORTA L,TEMPLETON J,et al. Model calibration efforts for the international space station's solar array mast[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics & Materials Conference. April 23-26,2012,Honolulu,Hawaii. Reston,Virginia:AIAA,2012:1953-1968. [3] KITAMURA T,YAMASHIRO K,OBATA A,et al. Development of a high stiffness extendible and retractable mast ‘HIMAT’ for space applications[C]//31st Structures,Structural Dynamics and Materials Conference,April 2-4,1990,Long Beach. Reston,Virginia:AIAA,1990:572-577. [4] STOHLMAN O,PELLEGRINO S. Effects of component properties on accuracy of a joint-dominated deployable mast[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference,April 4-7,2011,Denver,Colorado. Reston,Virginia:AIAA,2011:2163-2174. [5] EIDEN M,BRUNNER O,STAVRINIDIS C. Deployment analysis of the Olympus Astromast and comparison with test measurements[J]. Journal of Spacecraft and Rockets,1987,24(1):63-68. [6] HERBECK L,LEIPOLD M,SICKINGER C,et al. Development and test of deployable ultra-lightweight CFRP-booms for a solar sail[J]. Spacecraft Structures,Materials and Mechanical Testing,2001,468:107-112. [7] FERNANDEZ J M,ROSE G K,YOUNGER C J,et al. NASA's advanced solar sail propulsion system for low-cost deep space exploration and science missions that use high performance rollable composite booms[C]//4th International Symposium on Solar Sailing,January 17-20,2017,Kyoto. Hampton,Virginia:NASA,2017:1-11. [8] FERNANDEZ J M,ROSE G,STOHLMAN O R,et al. An advanced composites-based solar sail system for interplanetary small satellite missions[C]//2018 AIAA Spacecraft Structures Conference,January 8-12,2018,Kissimmee,Florida. Reston,Virginia:AIAA,2018:1437-1457. [9] BLOCK J,STRAUBEL M,WIEDEMANN M. Ultralight deployable booms for solar sails and other large gossamer structures in space[J]. Acta Astronautica,2011,68(7-8):984-992. [10] LEE A,FERNANDEZ J M. Mechanics of bistable two-shelled composite booms[C]//2018 AIAA Spacecraft Structures Conference,January 8-12,2018,Kissimmee,Florida. Reston,Virginia:AIAA,2018:938-961. [11] BAI J,XIONG J,GAO J,et al. Analytical solutions for predicting in-plane strain and interlaminar shear stress of ultra-thin-walled lenticular collapsible composite tube in fold deformation[J]. Composite Structures,2013,97:64-75. [12] CHU Z,LEI Y. Design theory and dynamic analysis of a deployable boom[J]. Mechanism and Machine Theory,2014,71:126-141. [13] LIBRESCU L,SONG O. Thin-walled composite beams:Theory and application[M]. London:Springer Science & Business Media,2005. [14] HAKKAK F,KHODDAM S. On calculation of preliminary design parameters for lenticular booms[J]. Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2007,221(3):377-384. [15] FIRTH J A,PANKOW M R. Advanced dual-pull mechanism for deployable spacecraft booms[J]. Journal of Spacecraft and Rockets,2018,56(2):569-576. [16] HU Y,CHEN W,LI R,et al. Mechanical characteristics of deployable composite thin-walled lenticular tubes[J]. Composite Structures,2016,153:601-613. [17] SICKINGER C,HERBECK L,STROHLEIN T,et al. Lightweight deployable booms:Design,manufacture,verification,and smart materials application[C]//55th International Astronautical Congress,October 4-8,2004,Vancouver. Brunswick,Germany:DLR,2004:1-11. [18] 林秋红,白江波,从强.超长可折叠复合材料豆荚杆轴向压缩屈曲性能测定方法研究[J].航空制造技术,2019,62(4):51-55. LIN Qiuhong,BAI Jiangbo,CONG Qiang. Study on measuring method of axial compression buckling performance of extra long collapsible composite tube[J]. Aeronautical Manufacturing Technology,2019,62(4):51-55. [19] MURPHEY T W. Booms and trusses[J]. Progress in Astronautics and Aeronautics,2006,212:1-44. [20] MURPHEY T. A material structural performance index for strain based deloyable trusses[C]//45th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics & Materials Conference,April 19-22,Palm Springs,California. Reston,Virginia:AIAA,2004:1656-1670. [21] YANG H,GUO H,WANG Y,et al. Design and experiment of triangular prism mast with tape-spring hyperelastic hinges[J]. Chinese Journal of Mechanical Engineering,2018,31(1):33. [22] ALI N B H,SMITH I F C. Dynamic behavior and vibration control of a tensegrity structure[J]. International Journal of Solids and Structures,2010,47(9):1285-1296. [23] 罗阿妮,刘贺平,SKELTON R E,等.张拉整体基本形体稳定构型理论[J].机械工程学报,2017,53(23):62-73. LUO Ani,LIU Heping,SKELTON R E,et al. The theory of basic tensegrity unit stable forming[J]. Journal of Mechanical Engineering,2017,53(23):62-73. [24] ASHWEAR N,TAMADAPU G,ERIKSSON A. Optimization of modular tensegrity structures for high stiffness and frequency separation requirements[J]. International Journal of Solids and Structures,2016,80:297-309. [25] 刘昊,魏承,田健,等.空间充气展开绳网捕获系统动力学建模与分析[J].机械工程学报,2018,54(22):159-166. LIU Hao,WEI Cheng,TIAN Jian,et al. Dynamics modeling and analysis of the inflatable net system for space capture[J]. Journal of Mechanical Engineering,2018,54(22):159-166. |