• CN: 11-2187/TH
  • ISSN: 0577-6686

Journal of Mechanical Engineering ›› 2018, Vol. 54 ›› Issue (12): 64-70.doi: 10.3901/JME.2018.12.064

Previous Articles     Next Articles

Numerical Method Study of Key Factor Identification and Parameter Optimization for Dynamic Impact on Bridge Based on the Pseudo-excitation Method

XU Wentao1,2, LIAO Jingbo2, ZHANG Zetong1, CHEN Yongjie1, TANG Guangwu2   

  1. 1. School of Mechanics & Engineering Science, Zhengzhou University, Zhengzhou 450001;
    2. State Key Laboratory of Bridge Engineering Structural Dynamics, Chongqing Communications Research & Design Institute, Chongqing 400067
  • Received:2017-03-06 Revised:2018-01-24 Online:2018-06-20 Published:2018-06-20

Abstract: Because of increased vehicle speed, engineers must pay more attention to the comfort of passengers and the safety of trains and bridges. This requires analysis and optimization of factors that may affect the dynamic behavior of the vehicle-bridge system. The need for a large number of repeated random vibration computations for complicated vehicle-bridge coupling systems causes serious difficulties in design. These difficulties have been overcome by combining the pseudo-excitation method with the symplectic mathematical method. The orthogonal experimental approach is used to identify the relative importance of factors affecting design such as vehicle weight, vehicle stiffness, velocity, track irregularity, contact model, bridge span, support style and material parameters. An efficient sensitivity analysis method based on PEM is used to optimize the key factors. Numerical examples demonstrate the accuracy and efficiency of the model. The results show that the factors impacting various positions on the bridge differ greatly. Impact factors increase with increased roughness of the bridge surface. The primary parameters that affect the impact factors are the bridge suspension stiffness, damping, and vehicle velocity. The impact of factors affecting the bridge is effectively decreased by parameter optimization.

Key words: orthogonal experiment, random vibration, sensitivity analysis, vehicle-bridge coupled system

CLC Number: